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AN AUTOMATED APPROACH TO QUANTITATIVE ERROR ANALYSIS
IN NEUTRON TRANSPORT CALCULATIONS

by

Erwin H. Bareiss and Keith L. Derstine

ABSTRACT

A method is described how a quantitative measure for the
robustness of a given transport theory code for coarse network
calculations can be obtained. A code, that performs this task
automatically and at only nominal cost, is described and has
been implemented for slab geometry. This code generates also
user oriented benchmark problems which exhibit the analytic
behavior at interfaces.

INTRODUCTION

The problem which we address here is concerned with ascertaining the
reliability of neutron transport calculations by high-speed computers.
Today's general approach is to check one computer code against another,
often for mathematically not identical problem settings. The best way of
checking approximate numerical calculations is to compare the results
against mathemgtically exact solutions. Unfortunately, in transport
theory such solutions are, in general, not available, or if available,
they are very expensive to obtain. There is however the possibility to

create benchmark problems with given meaningful exact solutions.

What we have started is a new discipline in Numerical Analysis,
namely Quantitative and Computerized Error Analysis. Clearly, this
discipline can be (and is) applied to other operator equations than the
transport equation. Traditionally, a new numerical technique was con-
ceived, analyzed for qualitative error bounds, implemented in a computer
code, tested against other codes, and then distributed. An alternative
approach is to make a systematic analysis of the mathematical properties
of the solution and the new technique, and then test the theoretical
predictions on inexpensive well designed small numerical benchmark
problems. The basic difference between classical or qualitative error

analysis and the quantitative error analysis is that in quantitative
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error analysis we aim at obtaining realistic error bounds for coarse mesh
calculations and performance predictions before a code is implemented.
What we do can be described by mathematical expressions, but the formulas
are very lengthy, complicated and difficult to evaluate. For all practi-
cal purposes analytic coarse mesh error analysis would be much too
expensive and too time consuming. Our automated approach yields not only
new insight, but simultaneously provides numerical results that give a
quantitative assessment of the approximation method under investigation.
It 1s a new type of analysis that combines modern and classical analysis
with computer technology and computer graphics. A very high efficiency
is possible because we exploit the use of dimensional analysis and
invariant theory. This is important, since the operators we deal with
are linear. We have now available a systematic and complete tabulation
of all scaling, translation, rotation and other group properties of the

transport equation. [Inonu 1975]

To give a perspective of an application of the procedures described
in this report, we shall briefly outline the major parts of our research

project. This report is concerned with part A only.

The entire code system, when the project is finished, will consist

of three parts with the following functions:

A. Cell Calculations (including 2-Cell Calculations)
B. Global Analysis
C. Computational Complexity
A. The code for part A is again subdivided into three major parts.

a) Creation of Benchmark Problems

b) Numerical Solution of the Benchmark Problems by
Approximate Methods

c) Calculation of the Error. The user will specify the

appropriate error norm.

Part A can also be characterized by calling its purpose Basic Quantita-

tive Error Analysis. It is designed to evaluate the desired error norms
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for calculations over a coarse network or with large finite elements. To
our knowledge there exists no other systematic approach to deal with the
coarse mesh error analysis. As will become evident, such an analysis is

practical only by automation and use of the computer.

B. The codes for part B will conduct a global analysis for multi-
region, multigroup calculation. The algorithms will be subject

to:

a) Global Error Analysis
b) Stability Analysis

c) Convergence Analysis

We note that the classical concept of consistency analysis does not appear
explicitly. The codes will supply various error bounds. However, the
main goal is to provide Probabilistic Error Estimates. Research in all
areas is underway. The tools employed are borrowed from functional
analysis, perturbation-, matrix-, operator-, and probability theory and

statistics.

C. The codes for part C are concerned with computational complexity.

By this we understand:

a) Performance Prediction
b) Code Evaluation

c) Data Management Analysis

Basically, part C is cost accounting. It will be based on the total
operations count (inclusive iterations count), error estimates, and memory
requirements. It will also provide a ratio of the actual operations count
of the implemented transport code to the theoretical minimum operations
count as determined from the mathematically defined algorithm. If this
ratio is much greater than one, the entire program (computer code as well
as theoretical background) should be investigated for potential signifi-

cant reductions in computer time.

This report describes the development of the one-dimensional phase

of Part A outlined in the previous paragraphs. It also describes the
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implementation of the procedures in BEAPAC-1T, a FORTRAN program opera-
tional at Argonne National Laboratory on the IBM 370/195. (A simple pre-
processor described in the User's manual [Bareiss and Derstine 1977] is
provided to facilitate conversion to CDC 6000 or 7000 series installations.)
The present code is designed for the one-dimensional transport equation and
supplements the theoretical results presented at the Fourth National Con-
ference on Transport Theory [Zweifel, Greenberg 1976], which was concerned

mainly with one-dimensional problems.

Section I details the major steps of the benchmark error analysis
procedure applied to one-dimensional transport problems. To maintain
presentation clarity, special derivations are included in the Appendices.
Sections II and III are each devoted to a different form of the tramsport
equation. Each section summarizes in matrix form selected numerical
approximation methods applied to its form of the transport equation.
Results from the application of the theory in Section I applied to the
approximation methods in II and III by BEAPAC-1T are presented and dis-
cussed. The conclusion assesses the experience gained with BEAPAC-1T and

proposes future directions to be considered.

The guiding principle of the project is to store on tape for easy
access and in computable form the theoretical knowledge of numerical
analysis which is pertinent to the quantitative (numerical) solution of
neutron transport problems, algorithms for approximate solutions and
special functions from instructions for their proper use. The output is
in tabular form and in visual displays, meaningful to the engineers and
scientists who are not specialists in numerical analysis. A systematic
analysis of a code requires detailed attention, knowledge, and time. As
we will demonstrate, BEAPAC-1T can do this tedious work fast and
economically. We want to point out that for an extensive error analysis
using Part A, the computer costs are only a fraction of a dollar. This

performance cannot be matched even by a very experienced numerical analyst

or engineer.
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I. THE BENCHMARK ERROR ANALYSIS PROCEDURE

BEAPAC-1T stands for Benchmark Error Analysis Package for one-
dimensional Transport theory calculations. Figure 1.1 shows the master-
flow chart. We shall discuss the function of the different boxes, but for
a more detailed description we refer to the text and to the User's manual

[Bareiss, Derstine 1977].
In general a benchmark solution wB is given as a linear combination

C
computed (i.e. approximate) solution to the given benchmark problem

of known exact eigenmodes with combining coefficients a+n. Y, is a

uniquely defined by wB. With wB and wC available, an error analysis can

be performed.

Often, one wishes wB to have a certain shape, Yg* wR is called the
reference solution and may have been obtained from an approximate calcula-
tion. It will not satisfy the transport equation. BEAPAC-1T employs an
algorithm to find an exact solution wB to the transport equation, which

satisfies wR on a selected subset of fluxes wA in a least squares semnse.

The first tenets for the implementation of BEAPAC-1T are to give the
user Freedom to set his own Standards and Flexibility in Applicationms.
BEAPAC-1T is therefore an open-ended (expandable) collection of subrou-
tines. The user chooses his own performance criteria for his particular

problem by calling available optioms.

Although the linear neutron transport equation is mathematically
uniquely defined, there are several forms of the transport equation which
are mathematically equivalent. At this time, the user has the option to

base his tests on the following stationary operator equations:

Stochastic Transport Equation (Standard form) [Davison 1957]

Symmetrized Transport Equation (Canonical form, Vladimirowv

equation) [Vladimirov 1963]
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for BEAPAC-1T
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1.1 Creation of Benchmark Problems for the One Speed Transport Equation

To specify benchmark problems is in general not a too difficult job
for an engineer [ANL-7416, 1968]. However, to design meaningful bench-
mark problems for which the exact answer is known, proved rather difficult.
It is necessary to have knowledge of the analytic behavior of the solution

at interfaces, boundaries, and corners (for multi-dimensional calculations).

Historically, the solution of differential equations was based on
"Hard Analysis." The more recent approach to numerical methods is based
on "Soft Analysis." The solution is imbedded in a given Sobolev space.
This approach is good for asymptotic error amalysis, for proving
existence-, convergence- and consistency-theorems. However, it is not
sufficient for analyzing "coarse network" calculations. We have shown
early in our research by pilot calculations that some "low'" order algorithms
gave better results than "high" order methods. An illustration of this

fact is given in [Bareiss 1971].

1.1.1 The transport equation in computational cells

The one speed neutron transport equation in a homogeneous computa-

tional cell D(0,a) is given by

1
(1.1) U %i— (x,1) + 0 p(x,0) ~ -qz-C-J Y(x,u")dp' =S
-1
where
y(x,p) is the neutron angular flux
o is the macroscopic total cross section (cm_l)
¢ is the macroscopic average number of secondaries per collision
oc is the macroscopic scattering cross section
S is a constant distributed source of neutrons
p is the cosine of the angular direction (u = cos 0)

x is the spatial distance perpendicular to the plane of the
infinite slab

D(0,a) denotes the domain 0 < x < a and |u|.§ 1
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A particular solution of (1.1) is
v = §/a(l-c)
p

which is a constant.

The associated homogeneous equation to (1.1) is

. 1
(1.2) u %i— (x,u) + 0 ¥(x,u) - %J y(x,u')dp' = 0.
-1
The general solution of (1.1) is the superposition of the particular

solution and the general solution of (1.2).

The neutron mean free path length (the average distance traveled

between collisions) is given by o—l. The transformation

x
z = J o(x")dx' = ox
0
applied to (1.2) expresses distances in terms of mean free paths and

(1.2) becomes the dimensionless form of the transport equation

1
d
(1.3) M gi’- (z,u) + y(z,0) - % J Y(z,u')du' =0 .
-1
Obviously, it 1s sufficient to investigate the analytical behavior of

the homogeneous equation (1.3).

1.1.2 Elementary solutions to the transport equation

Case [1967] showed and Bareiss [1966] gave a mathematically rigorous
proof that the general solution Y(x,u) to (1.3) in an infinite slab is

composed of linear combinations of elementary solutions. The solution is

given by

-x/v +x/v
(1.42) v(x,u) = a; s, e O+a o (w)e
0 0 ™

0

1 /
+ J A(V) ¢v(u)e_x Vdv
21
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+

where the ¢+v (u) are called asymptotic solutions, and a, are constant

0
expansion coefficients.

Yo

=&Y

where * Vg are the roots of the characteristic equation

cv v+ 1y _
(1.6) 1-Sm—35) =0.
For ¢ <1, 1 f_vo < o, for ¢ > 1, vo = iko, 0 < ko < oo,

The transient solutions with H6lder continuous expansion function

A(v) are defined symbolically by

v

(1.7) by(0) = 5 B 5=+ AV 8(v - W) v <1
where

1+
(1.8) Av) =1 -3V talF—)

is the dispersion function.

The definition (1.7) is valid only under integration where P indi-
cates Cauchy principal value integration and 8§(v - u) is the Dirac delta

distribution function (Stakgold 1969) defined by

J §(x - xo)f(x)dx = f(xo)

Bareiss [1966], Abu-Shumays and Bareiss [1969], Hingelbroek [1973] and
Larsen [1975] showed completeness of (l.4a) and conditions for the space
of the coefficient functions A(v) in different function spaces for the

solutions Y(x,u).

1.1.3 Construction of benchmark problems from elementary solutions

Our objective is to create benchmark problems to a known exact

benchmark solution wB(x,u). This solution will have the form
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N

(1.9) bpxow) = § a, q, () .

n=0
The qn(x,u) are a set of appropriately chosen analytic functions which
satisfy (1.3); the a are appropriately chosen combining coefficients.
The construction of the qn(x,u) as used in the present code BEAPAC-1T
[Bareiss, Derstine 1976] is described below. We emphasize that this
represents only one realization of many possibilities. It demonstrates

a general method to construct "Eigenmodes" qn(x,u) based on an established

theory.

We generate arbitrary problem (1.9) based on the solution (1.4a}

as follows:
Rewrite (1.4a) as

-x/v — ~(a-x)/v
(1.4b) v(x,u) = ag ¢V0(u) e 0, a5 ¢_, © 0
0

! -x/v 1, /
+ J A(V) ¢v(u) e dv + J A(-v) ¢v(_u)e-(a—x) Vv
0 0
where

B —a/v0
a,=a_e

A(v) = A(v)e_a/v

A simple physical motivation can be given for (l.4b). The terms

-X
with the e factor represent decay of neutrons from a source at x = o,

x)

. -(a-
while the terms with the e ( factor represent decay from x = a.

We denote the as totic coefficient S
ymp cients ag» a0 by ay and a_y

respectively; likewise qN and q_N are defined by

—x/\)0
(1.10a) qN(x,u) = ¢v0(u)e
-(a—X)/v0
(1.10b) q_y(xm) = ¢, (-we
0
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The transient coefficients are obtained by requiring the A(V) to

have the form

N-1
(1.11a) A(V) = nZO anen(v) 0<v<l1
(1.11b) A) = ] a_0_(-v) -1 <v<0
oo BT —

where the On(v) must be Holder continuous functions. Except in the

neighborhood of v = +1, we represent A(v) by a superposition of Chapeau

functions (linear splines) -- see Fig. 1.2 -- defined by
4
V- vn—l
v vn_l <wv i-vn n=1,2,...,N-2
n-1
v -V
nt+l _
(1.12a) On(v) —ﬁ I v <v< vn+l n=20,1,...,N-2
0 otherwise
N
where Avn = vn+l - vn
for the discretization of v given by the N+1 nodes 0 = vo,vl,...,vN = 1.
When n = N-1 a special basis element GN_l(v) defined by
r\) -V
N-2
\Y < v < v
AvN_2 N-2 N-1
(1.12b) 0, (V) =¢ 1 - n
. N-1 \ ) vo o <v<l 0<ac<l
Av N-1— " — -
N-1
0 otherwise
|

is introduced so that we obtain an appropriate approximation basis in the
neighborhood of v = *¥1., 1In Section 2.2 we will show the effects of this

element on the approximation.

It is also obvious that the Chapeau functions can be replaced by

other functions such as cubic splines.



2 m-1)°%- -1y W AV

A
ay-1%-1
A-2%y-2 (V)
a_OG_O(v)
209%™

-1.,-.875 -.75 -.5 -.25 0 .25 .5 .75 875 1.
-.95 95

v >

Figure 1.2 Approximation ot A(v) by Chapeau Functions

A4
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Upon substitution of (1.11la) into the first integral of (1.4b) we

define

vn+l —X/\)
(1.13a) qn(x,u) = J On(v)¢v(u)e dv (n=20,1,...,N-1).

Vn-1

By symmetry arguments we find
(1.13b) q;n(x,u) = qn(a—x,—u) (n=0,1,...,N-1).

As shown in the Appendix A.1, the integrals in (1.13) are manipulated
analytically to obtain exponential integrals. Appendix B shows how the q (x,u)
i.e. the E(a b)(x) and I(a b)(x,u) can be evaluated very accurately using
the exponentlal 1ntegral routine DEI in the ANL Applied Mathematics
Division program library [Cody 1971]. Substitution of the elementary
modes q (x,u), so obtained, into the transport equation yields a residual

15

on the order of 10 ~° for qin(x,u), n=0,1,...,N-2 and 10 12 for q+(N_l)(x,u).

Using a set of coefficient values [aio’ail""’aiN] we can evaluate
(1.9) numerically at any point (x,H) in D(0,a) with as much accuracy as
needed, hence these solution values are considered exact for all practical
purposes. Hence the benchmark solution wB(x,u) of (1.9) is well defined,

and wB(x,u) for x=0,x=a can be used to specify the inhomogeneous boundary

conditions
(1.14a) B p(0,1) = £,(0,1) p>0

for a finite inhomogeneous boundary value slab problem. Bl and B2 are
boundary condition operators chosen by the user to create specific
benchmark problems with the known exact solution wB(x,p). For example,
if an incident flux boundary condition is specified at x=0, then

fl(O,u) is defined by
fl(osu) = q)B(O’U) n > 0.

Discussion of available boundary conditions for each form of the transport

equation are found in the corresponding Sections II and III.
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1.1.4 Automatic superposition of elementary solutions

In this section we develop two algorithms for generating the combin-

ing coefficients a for a one-cell benchmark solution

N
(1.9) bl = T ap g 0o0).
n=

From a purely mathematical standpoint any choice of coefficients
a defines an exact solution to (1.2). Practical considerations suggest
that benchmark solutions with physically meaningful solutions are
desirable. Such solutions will enable us to analyze the error behavior

of an approximate numerical method at cell boundaries and interfaces.

The two algorithms considered require an initial angular flux dis-

tribution QA(x,u) specified for discrete directions 1 > M1 > u2 >...,uM=>-l

at the boundaries of the cell of interest. QA(x,u) is usually obtained
by solving a multicell problem via some standard approximate transport
theory method such as the discrete ordinates method. QA(X,L) is the
angular flux solution values calculated in the cell of interest. The
distribution QA(x,u) serves only as a device to drive the coefficient
generation algorithms. The resulting benchmark solution wB(x,u) will be
a perturbation of_QA(x,u)

N

(1.15) RESNIE ZO a q (x,w) +a_a_(x,n
n=

but once we have calculated the a we forget about the original

QA(x,u) and proceed to generate benchmark problems based on wB(x,u).

In the first algorithm the coefficients a_ are chosen to minimize
the approximation error in (1.15) in the discrete least squares sense.

The problem is mathematically defined by

(1.16a) lQa - EAHZ = min

where Q is the M x (2N+2) rectangular matrix ((2N+2) < M). The
columns_gp of Q are defined by

M
(m=1,2,.00,, 1 =1
FRENCICINTRY 2 )
- M
(m_2+195+ 2,...,M, i

2

)
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where (p =1,2,...,N) corresponds to (n = 0+,1,2,...,N—1),
(p = M1,...,2N) corresponds to (n = 0 ,-1,-2,...,-N+1)
(p = 2N+1,2N+2) corresponds to (n = N,-N)

~

a-= [aO’al""’aN—l’a-O’a—l"'"a—N+l’aN’a—N]

on the discrete set of space points and angular directions for the numer-
ically given flux values {wA(xi,um)}. To approximate the continuous
least squares problem corresponding to (1.16a), Q and ¥

—A
the angular and spatial weights wmi of the corresponding numerical inte-

a "e modified by

gration. Hence, the actual problem solved is

(1.16b) “ag - EA”Z = min
where a = (wmiqp(xi’um))
and aA = (wmiyA(xi,um)).

A simple modification to the problem of (1.16) permits the inclusion of
K <M linear constraints on the approximation at particular points (i,m)
in the equations (1.15) and their corresponding rows in (1.16). If we
permute the rows of (1.16) such that the K equations which must satisfy
linear constraints are first, the least squares problem with linear con-

straints becomes

GH G G

|
Q1 Q a v 0
(.17 |=——— % ————— - | A = -
HG | .HH H H .
Q : Q a . i%.- min

where the linear constraints are represented by

(1.18) [QGGE QGH:| | = [ifﬂ
H
=]
and where the partitioned submatrices of Q and vectors g_and_yA have

dimensions
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Q€. K x K, Q°1; K x (2N42-K) K < M
QHG: (M-K) x K, QHH: (M=K) x (2N+2-K)
a% K ,al: 22K
G H
: : 2M-
vy K . ¥, K

The procedure for solving (1.17) has three major steps which are

(a) Perform the first K steps of the forward sweep of the Gaussian

elimination algorithm on (1.17).

(b) Perform the Householder least squares minimization on the remaining

(M-K) equations modified by step (a)

~ ~ H .
(1.19) 10" a" - 9, I, = min

(where éHH, yaH are the modified matrix and vector from step (a))

to obtain the coefficients gﬁ.

(c) Perform the backward substitution of the Gaussian elimination algo-

rithm on the first K equations using g# from step (b) to obtain éF-

The second algorithm obtains the coefficients a by evaluating
analytic formulas based on related formulas [Case 1967] for the infinite

medium problem. The asymptotic coefficients are defined by

+ 1 1 +
(1.20a) ay = =% u¢0(u)w(u)du
N0 -1
where
v(p) is the angular flux distribution
T L
(1.21) NO = u[¢0(u)] du

-1
The transient coefficients function A(v) is defined by

1
(1.22a) AW) = N(l—v)J uo,, () ¥ (u) du
-1
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where
=V
(1.23a) N(v) = 2(v.0)
and
1
(1.23b) g(v,c) =
2o + 9%

2

In order to use equations (1.20) and (1.22) we need a flux distribu-
tion Y(u). The initial angular flux distribution vector yA(x,u) can be
used for this purpose in the following way. (Note that we are again
using QA(x,u) merely as a device for obtaining coefficients a to a

benchmark solution wB(x,u) which is some perturbation of_gA(x,u).)

Recall that the elementary modes qn(x,u) (n = O+,1,...,N) decay
exponentially from the left boundary of the slab, whereas qn(x,u)
(n=0,-1,...,~N) decay exponentially from the right boundary of the
slab. Using this knowledge we determine the coefficients a for
(n = 0+,1,...,N) and (n =0 ,-1,...,-N) by replacing {(u) in (1.20) and
(1.22) by QA(O,p) for n > 0 and yA(a,u) for n < 0. To simplify the
integration in (1.20) and (1.22) we replace the vector QA(x,p) by

wA(x,p), the piecewise linear function defined as follows:

L
(1.24) wA(x,u) = QZO wA(x,utR)Gz(iu)
where
;
H - U
2+
A ey, g =0,1,...,L-1
He
H™ W
-1
L 0 1 otherwise

Bg = Mg Wy
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for 0 = uo < pl <...< My = 1. Note that this representation permits
discontinuities in the flux at u=0 since Oio(u) has coefficients
wA(x,uio). The representation (1.24) enables us to perform analyti-
cally the integrations in equation (1.20) and (1.22) involving the
singular eigenmodes and the piecewise linear angular flux $A(x’“)‘ The

computational formulas for (1.20a) and (1.22a), are

1
(1.20b) at =L J u¢g(u)mA(0,u)du

+
0 -1
L

2

ot I =

a/v
(1.20c) a. = a

o
o

1
J u¢6(u)¢A(a,u)du
-1

L

2=0

cleh‘

t

b, (asm, P, (V)

<Sz||“

l ~
J u¢v(u)wA(0,u)du (0<v<l
-1

L

- g(v,c)lzo¢A(o,ui2>pig(v)

(1.22b) Av) = N(lv)

and

~ 1 ~
(1.22¢) A(v) = N(lv) j u, (¥, (a,u)du (-l<vz0

-1

L

= S(“»C)zzowA(a,uil)piz(v)
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where

"

1 (e

(1.26) p, (V) =3 J e, (00 (w)du,
Ho-1

When v # Uy pl(v) is defined as follows:

’

P(V,]Jl,liz_‘_l) Q,=+O,Q,=_

(1.27) (V) =-§ﬂ PV My s 0) = p(v,ul,ul_l)?'+ 0, (MA(V)  2=%1,%2,...,

+(L-1)
= PV, H, ) %=L, 2=-0
~ J
and when V=i
( h
An
2 _
- 2=0
c
Py i) = £ jpp(ul,ul_l,uzﬂ)“ A(y) P=1,2,...,L-1
s =1 -
5 =-0
N J
where
_ b-a (b-v) |v-a
(1.29) p(v,a,b) = v —E—-+ v boa 1°g|b—v
(1.30) pp(v,a,b) = P(stsb) - P(V’V,a)
_ _ (b-a) v-a
-——E——-+ v log vl

Note that pL(l) and p_L(-l) are undefined since A(4l) is undefined. How-
ever, we know from analytic considerations that A(fl) = 0, hence we may

omit the calculation of A(#*1). Note also that both asymptotic and transient
modes are treated by formulas (1.26) to (1.29).
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1.1.5 Residual checking of the benchmark solution

Two related quantities to the q_ (x,u) are available in BEAPAC-1T.
They are the elementary angular flux derivative q( )(x,u) and the
elementary scalar flux q( )(x)

These quantities have several useful roles. The elementary scalar

flux qi—l)(x) is defined by

(1.31) R Jl q_ (x,h)du

-1
and computational expressions are derived in Appendix A.3. It may be used
to investigate the discretization error and truncation error in the numer-
ical integration of the angular flux. The elementary angular flux

derivative is defined as
(1.32) qn

and computational expressions are derived in Appendix A.2. Given an,

qé— ), and q( ) we can calculate the scalar flux
N

(1.33) 00 = L ay 25" ()
n=

and the angular flux derivative

Y. (x,H) N
B
(1.34) e - Z a+nq£n)(x,U)
n=0
exactly.

Y
Given wB(x,u), ¢B(x), and -—Eéiiﬁl we can compute a residual vector

r where r is defined on a given reference net by

1 _ %LL) )
(1.35) Lyg +ug(x,u) - 7 QB(X) r.

The underlined symbols represent computed quantities.
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Evaluation of (1.35) pfovides a method for checking the pointwise
accuracy of the elementary solutions qn(x,u). Numerical experiments

have consistently shown bounds of the order
(. -15
JlO standard basis elements

”_r_‘ Lo < \Llo_lz

special basis element

1.1.6 Two cell problem considerations

The preceding discussion was directed toward one cell problems. We
would like to point out that a variety of interesting problems can be
treated in the one cell case. We may solve a large one~dimensional
complex reactor configuration by some production code, then successively
select cells of interest and analyze the reliability of the solution in
each cell with the technique just discussed. In this case, we can ob-

serve local boundary and interface effects on the numerical method.

We solve two cell problems to observe the solution behavior at the
cell interface where now the flux values are not specified at the inter-

face.

The two cell problem is represented by the operators

1.36) LD 24, - %3’y ld (=1 II’)
(1. SH T T " ’
01
and
- (1.37) L(I)wél) (x,u) = s 0<x=<a
(1.38) L(Il)w(II) (x,u) = st a<x<b

B

with interface condition
IT
(1.39) wél) (a,n) = wf,, )(a,u).

The particular solutions due to the constant sources SI and SII in each

cell are given by
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i

i) ___s =
(1.40) N R 1 =1,11).

II
The homogeneous solutions wéI)(X,u) and wé )(X,U) are obtained in turn

by the procedures of sections 1.1.3 and 1.1.4, using an initial flux
distribution wil)(x,u) and wiII)(x,u) for the two cells. The benchmark

solutions in cells I and II are now
(1) ey (1) -1
(1.41) Vg Gu) = vy (x,n) + "’p (1 ,II).

To satisfy the continuity condition (1.39) an angular dependent source
term Q(u) is added to cell II.

Let

a(II)

(1.42) B

) = v Gy + WP a,m - 0 (a,m)

so that (1.39) is satisfied. Equation (1.38) is now replaced by

(1.43) LTI ey = s+ aw
where
aw = LM P @, - 4§ @)
ie.,
(1.44) Q) = o705 @) - 4T (- TLIL (4D () (D

since the derivative term of the operator is zero in this case. The
interface condition is now exactly satisfied for w;(a,u) = agl(a,u) by
(1.42).
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1.2 Solution of Benchmark Problems by Approximate Numerical Methods

We are now ready to test a numerical method to solve the transport
equation with the solution wB. BEAPAC-1T contains a set of subroutines
for the numerical solution of the transport equation by methods which are
widely used. They are all in a standard form. The numerical methods are

reduced to the problem of solving a linear matrix equation of the form
(1.45) Av = b.

Hence, a particular subroutine contains instructions to calculate the
elements of the matrix A and the vector b. The process is as follows.
First, the desired network DIM(O,a) is set up. Then the necessary
boundary values fl(O,u) and fz(a,u) are calculated. With this informa-
tion the elements of A and b are calculated, and the linear equation is
solved accurately by a direct method, usually by Gaussian elimination
utilizing the band matrix structure. Calculations are performed in single
precision on the CDC 6400 and in double precision on the IBM 370/195. A
special feature for analyzing the rounding error in the matrix solution
is included in the IBM version of BEAPAC-1T. The matrix equation is
truncated to single precision values and calculations are performed in

single precision arithmetic.

In most cases, the elements of v represent the discrete directional

fluxes, and are denoted by EC

The available numerical methods for the various forms of the transport

= wc(xi,um) i=1,2,...,I, m=1,2,...,M,

operator are described in Sections II and III.

The user can also interface with BEAPAC~1T, the angular flux results
EC from existing codes for the numerical solution of the transport equa-
tion by preparing the necessary interface files discussed in the users

manual (Bareiss and Derstine 1977).
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1.3 Error Analysis of Approximate Methods

In Section 1.1 we developed the tools necessary for generating exact
benchmark problems with solutions WB(x,u)- In Section 1.2 it is outlined

how we obtain approximate solutions EC to these benchmark problems.

In this section, the error Yp of the approximate solution Y, is calcu-
lated using the exact solution wB(x,u). Two pointwise error options

are available:

a. algebraic flux error yE = yﬁ - wc

(1.46) wB - EC

b. relative flux error QE = 93

Norms available in BEAPAC-1T based on QE are:

a. “EEII : maximum absolute with associated mesh location, algebraic

Vg
sign and flux value.

average absolute QE

N = number of calculated fluxes

The norms may be computed for a variety of domains.

1. Global ¢ all calculated flux nodes
2. Boundary : boundary and interface flux nodes
3. Interior : interior flux nodes (non-boundary)

(GLOBAL = BOUNDARY u INTERIOR)

The corresponding scalar flux QB’ QC’ or QE may be optionally tabulated
for any desired set of spatial points.

The objective of coarse mesh error analysis is to obtain quantita-
tive error bounds on the performance of numerical approximation methods.
Specific items of interest are boundary condition effects, spatial and
angular mesh refinement effects and effects of materials with extreme
properties such as strong absorption, strong scattering, or regions with

a strong source.
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BEAPAC-1T has built into it a special procedure for obtaining a set
of K successive mesh refinements of D(0,a), designated D?M(O,a),
(k =1,2,...,K). Summaries of the error norms are tabulated for the
benchmark problem in a manner that readily shows space angle mesh
refinement effects. Detailed flux edits and two-dimensional plots are
available for further analysis of the results. Particular examples are

given in the sample problems in Sections 2.2 and 3.3.
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IT. THE STOCHASTIC TRANSPORT EQUATION

2,1 Numerical Methods

2.1.1 The discrete ordinates method with Hermite Birkhoff interpolation

This method uses discrete ordinate approximations in angle and
Hermite-Birkhoff Interpolation in the space variable [Bareiss 1956]. It
will be denoted by the DB-Method. In one~dimensional slab geometry
problems, the discrete ordinates SN-Method widely used [Carlson and
Lathrop 1968] is a special case of the DB-Method, limited to linear

approximation in space.

The approximation is illustrated by rewriting (1.1) for the multi-

cell problem as follows:

1
(2.1) / 3: ) =% [~o(x)¥(x,n) +%‘i& [ Yp(x,u")du' + s(x,u)].
-1
We observe that the two point Euler Maclaurin Sum formula [Isaacson and
. - - -4
Keller, 1966] yields, by letting X417 T hi (i=1,2,...,I) and D = In
X
i+l
- - 9y (x,1)
(2.2) VlxgpqoH) = b(xg,w) ) % dx
*3

h,D
=5 (x4 vxg,w]

h‘D h.'D h.D ) B
i i i _w(xi+1’“) - w(xi,u);i.

22 44 6.6 ]
12 720 T 30240

Equation (2.2) is equivalent to a two-point Hermite Birkhoff interpolation

with subsequent integration.

We solve (2.1) by the discrete ordinates method, hence we approxi-
mate the integral by numerical integration methods including single or
double Gauss quadrature. Therefore, (2.1) becomes a system of discrete

first order differential equations.
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(2.3a) Dy = M 1[-0T + L Wy + M 1g
where
Mo w2<x)
M = . ’ v = .
i My | i wM(x) J
and
— - — -
W Wy oWy Sl(x)
Wi WUy Sz(x)
W = . § =
-wlwz. -V | _SM(X) |

iy th
0 and ¢ are assumed constant within a cell. Therefore the k

power of (2.3a) evaluated at the endpoints of cell i (i.e., X4 <x <

xi_l_l-), and cell i-1 (i.e., X, Fix < xi-) is given at x = Xy by

k k (k)

(2.3b) DY, = Ajy; +by
i 1
kK, _ .,k (k)
D gi_ Aj ¥y +bS
where
g.C
-1 iy
(2.5a) Ay =M [-0 T + 5= W]
k=1 j
(2.5b) ¥ =wl ) s
j=0 ax _
X = xii
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The assumption that S (x) is constant within a mesh cell implies
that 3jS/3xj =0 for j > 0 Thus

(k) -1 h S = S(x ,)
2.5 b =M s where .
( . C) —_ 4 —_ - - i'

I+

Substituting (2.3b) into (2.2) yields a system of linear equations for
V(%) = VGxyHm ) (1=1,2,...,I), (w=1,2,...,M). We write this system

for cell i as follows, letting x, = xi+ and x, . = xi+l_‘

- 1=1,2,...,I-1
(2.6) E, % +HillJ 41 - 8 ( )
where
2 4
h.A. h h
i i 2 i 4
= l1- L2 L4 2 A% - 2 AT+l
(2.7a) Hy [I > T2 A T 720 A ]
(2.7b) E, = -H, - hA
h, hZ n
_ (1) (L) 1 (2) @) i 4 _ L, (4)
(2.7¢) R R Y N CHUER NI N CHEGES P
-1
- hM S,

The last two terms of (2.7c) are zero, since we assume a piecewise con-

stant source Sm(x) for X, <x <x Combining the equations (2.6) and

i+l’
(2.7) with the boundary conditions into matrix form we obtain

B o 1wl [47
El Hl _q,_z 5.1
£
E, H, -
(2.8) . . . =
E H . :
0 I-1 1I-1 Ei—l
t B2 _ L_‘P_I | £2 N
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The matrices Ei and Hi have exactly the same configuration inde-
pendent of the order of approximation (i.e. power in Ak). B, and B

M 1 2
are the-E X M boundary condition matrices defined by

(2.9)

=]
I

t
n

where

(1,0) for incident flux boundary condition
(2.10) (a,B) =
(1,-1) for reflecting flux boundary condition.

ii and §2 are inhomogeneous boundary source vectors of dimension.g-defined

2
by

Y, (0,u ) u >0 incident
(2.11a) fl(um) = J’B m m

LwB(O,um) - wB(O,—Um) W 0 reflected

Y (a,u_) p <0 incident
(2.11b)  £,(u ) = B-'m m

wB(a,Um) - wB(a,-um) by <0 reflected

First, third or fifth order approximations are obtained by truncat-
ing (2.7a) after the second, third or fourth terms, respectively. Then

(2.6) becomes
(2.12) By, + 1y =g, (1=1,2,...,T), (k=1,3,5)

where the superscript k denotes the order of approximation.
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Block tridiagonal Gaussian elimination is employed by partitioning
the subblocks in (2.8) such that the following structure is obtained.

b, & 0
A2 BZ C2
A B C
(2.13) 3 3 3
D

Ai and Ci have dimension M x % and Bi has dimension M x M. Boundary con-

. M _ M
dition submatrices Dl’ Cl’ AI and DI have dimension 2 X5 The matrices
are stored in a rectangular array with dimension IM x 2M.

2.1.2 The discrete ordinates method with Galerkin Finite Element
method in space

The approximation method discussed is a discrete ordinates method
in the directional variable p with a Galerkin Finite Element approxima-

tion in the spatial variable x. We denote this method by the DGF method.
Let

0<x<a

(2.14) Ly(x,1) = S(x,u)
-l <ux<l

represent Eq. (1.1). ¢(x,nu) is expanded in a set of piecewise linear

Chapeau functions {Oi(x)} as follows:
I
(2.15) P(x,u) =} b, (Wo, (x) 0<x<a
i=1 -

where {Oi(x)} is defined as in (1.25). The DGF method finds solutions
V(x,u) which satisfy the weak (Galerkin) form of (2.14) [Strang and Fix,
1973] given by

(2.16) 0,0, Ly(x,u)> = <0, (%), S(x,1)> (1 =1,2,...,1)
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where

<e> = dx .

in+1
X1

Application of the discrete ordinates approximation to (2.16) leads

to a set of IM equations

(1 = 1,2,...,1)
(2.17) <6, (x), Lp(x,u )> = <0, (%), S(x,u_)> m=1,2,...,M
which upon substitution of (2.15) becomes
I M I
* d ag(x)e(x)
(2.18) <0, (x), (v, 35+ o) kzlbkm@k(x) S mzﬂwm, kzlbkm,ek(x)>

= <0,(x), S(X,um)> .

The discrete ordinates approximation is derived by evaluating the
angular flux distribution in a number of discrete directions; hence the

. . . .t . . .
scattering integral in the i h equation is approximated by

1 M
J dub (W) & ] whb, .
1 m=1

The numerical integration is usually double Gauss quadrature.

It is easily shown that

b, FhG) = vz
since Gi(xi) =1, Oj(xi) =0 for 1i#j.
The matrix representation of (2.18) becomes

(2.19) Ky = g -

Here



(2.20a)

and

(2.20b)
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T B K ] g, (%)]
Kii %2 Yix)) E1
(x)
Kop %o Ko E(xz) )
K = ) ’ 2 = ) s B~ )
Kpo1,12 5-1,1-1 %1-1,1 , X
(x)
KI,I-l KII_ :‘E(xl)— .&I .
(1) (0) €i-1 (0)+ €4
= T - —= o, (I -—VW
Ky = koM + kg oy (T - W)+ gy ,°i( 5 V)

where I is the identity matrix, M = diag(um) (m =1,2,...,M) and

~ -
Wl W2 . WM
Wl w2 . WM
W=
L Wl Wz PR WM i

except for i=1, where the first M/2 rows in K and K_, are the

11 12
(M/2 xM) matrices B11 and B12 respectively, and for i=I, where the last
M/2 rows in KI,I—l an?bﬁﬁ’l are the (M/2 xM) matrices B21 and B22 as
defined below. The kik_ are defined so that
_ (0)- (0)+
<@i(x), Ok(x)> = kik + kik
where
X Ax 1 1<i=k<I
2.218) k97 = [T o (no (x)dx = —TH{y 1=k-1"
ik i k 3
0 otherwise
X,
i-1
and
X AX 1 1<i=k<I
(2.218) 1D - J e ogryax = —HE 1=ka
i 0 otherwise
X

i
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The kii) are defined so that
0 1<i=k<I
(1) _ ' _ 1y .J) 1 i=k-1 or i=k=I
(2.21c) kik <Oi(x)’ Ok(x)> = 2 -1 1i=k+l or i=k=1

0 otherwise

Boundary conditions By (x,n) = f(x,p) at x=0, u>0 and x=1, u<0 are
incorporated into the matrix K in (2.20a) by defining the first M/2

rows of K11 and K12 by Bll and B12 and the last M/2 rows of K
KII by B

21 and B22.

B11 and B12 are the left side (x=0) boundary condition matrices

and BZl and B22

defined for incident or reflected flux boundary conditions so that

II-1 and

are the right side (x=a) boundary condition matrices

-1 .
1 B
(2.22a) B11 = : . ) , B12 =0
L 18 |
g = {0 incident flux
1 reflected flux
~ s 1 _
B 1
(2.22b) B22 = . ) . B21 =0
B 1 |
T . .
) (xi) is defined so that
T
(2.233) IRCHIEN T NETCHRTS IR TCINTY
and gi(x) = (gim) is defined so that
| AxlSl(um)
(2.23b) 8ym = <0; ()5 S(xop)> =3 0 Qax, S, (u) + ax,S (o)

except that the corresponding inhomogeneous boundary condition terms
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= = +lo"M
fl(um) and fz(um) replace By ™ 1,...,M/2 and 8y @ M/2 , ’
respectively. fl(um) and fz(pm) are defined so that for u > 0

wB(O,u) incident flux
(2.24a) £,.00) = (u > 0)
wB(O,U) - ¢B(0,-U) reflected flux
and for u < O,
wB(a,u) incident flux
= (< 0)

(2.24b) fz(U)
[#5€as) - ¥y(armw)  reflected Flux

K is a block tridiagonal matrix which is stored in a rectangular
array of dimensions IM x 3M. The system of equations (2.19) is solved

by block Gauss elimination.
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2.2 Examples of the Benchmark Problem Error Analysis Procedures

Four monoenergetic slab benchmark problems with isotropic scatter-
ing (denoted by BP1l, BP2, BP3 and BP4) are presented which illustrate
several types of investigations which may be performed using BEAPAC-1T.
BP1l and BP2 are one-cell benchmark problems with angular flux solu-
tions wB(x,u) given by an asymptotic and transient Case eigenmode
respectively. BP3 and BP4 are benchmark problems whose solutions are
linear combinations of asymptotic and transient Case eigenmodes. The
latter two problems illustrate the automatic procedure (section 1.1.4)
for obtaining the eigenmode combining coefficients. This procedure
employs the Householder least squares solution of an overdetermined

system of equations and is shown to be a prototype of a new numerical

solution method.
2.2.1 Benchmark Problem #1, an asymptotic eigenmode

BP1l is defined in the unit cell 0 < x < 1 with angular direction
cosines Iu] < 1. The cell composition is defined by the total cross

section 0 = 1, the asymptotic eigenvalue v, = 1.05 (i.e. ¢ = .5129 by

0
Eq. (1.6)) and isotropic source S = 0. The benchmark solution wB(x,u)
is defined from Eq. (1.4b) with ag = 1 and all other combining coeffi-
cients zero. Incident flux boundary conditions are defined by wB(x,u)
evaluated at the boundaries. Figures 2.la,b,c illustrate respectively
the scalar flux ¢B(x) and the angular flux traverses of wB(x,u) along

x for p fixed and along u for x fixed.

The numerical methods denoted by DBl, DB3 and DGF corresponding to
the first (SN-Method) and third order discrete ordinate Hermite Birkhoff
method and the discrete ordinate Galerkin finite element method
respectively are applied to BP1 for successive sets of space/angle
mesh discretization. Five spatial refinements h = 1/I (I=1,2,4,8,16)
and four double Gauss (DPN/Z’ N=2,4,8,16) quadrature sets define twenty

problems.

The numerical results for the twenty discretized problems are tahu-

lated in Tables 2.1, 2.2, 2.3 and 2.4. Each table contains three
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Figure 2.1. Flux Distributions for Benchmark #1
(a) Scalar flux ¢ (x)
(b) Angul :
ngular flux traverse ¢B(X’U) along x for fixed u
(c) Angular flux traverse wB(x,u) along u for fixed x
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Table 2.1. Maximum absolute signed scalar flux error +ﬂ¢ "
tabulated for twenty space/angle discretization
sets of Benchmark #1 for the DB1, DB3 and DGF methods

BEAPAC 05/76 BPOLI ASYSPTOTIC SOLUTION A0+w 1, Nu0e1,05,X:(0G,1),bC(1,1),5%0

RAX, ABS. SCALAR PLUX ERROR AWD LOCATIOM (GLoBaL)

I: ¥C. OF XNESH INTERVALS J: ¥O. OF KU POINTS
3. 2 a 0 1%
T .
T T R Y
PREOR 1 . 4.18D-01  1.820-01  N.120-02 ° 2.500-02  °
EIacT . 1.000 1.000 0.386 0.386
I Loc . 0.0 0.0 1.000 1.000
BREOR- 2 . 4.130-01  1.790-01  3.28D-02  6.170-03
EXACT . 1000 - 1.000 1.000 0.621
T 10¢ . 0.0 0.0 0.0 0.500
(a) DBl. BRECR ¥ . 8.120-01 | 1.790-01 | 3.320-02  2.120-03
ExACT . 1.000 1.000 1.000 0.430
T L0C . 0.0 0.0 0.0 0.750
ERRCE 8 . 8.120-01  1.790-01 | 3.330-02  1.180-03
PXACT . 1.000 1,000 1.000 0.700
3 Lo0C . 0.0 0.0 . J \0.D 0.375
ERROB 16 . 4.120-01  1,79D-09 1.050-03
EXaCT ~ 1.000 1.000 0,942
X 1L0¢ . 0.0 0.0 0.063
BEAPAC 05/76 BPIL2 ASTHPTOTIC SOLUTION AQ+=1,KU0=1.05,X:(0,%) ,BC(I, 1) ,S=0
BAX. ABS. SCALAR PLOX ZRROR AND LOCATION (GLOBAL)
I: NO. OF XNESH INTERVALS J: ¥O. OF MU POTWTS
2. 2 i ) 1
1.
PRROE 1 . A.120-07  1.78D-01, 3.30D-02 - 1.05D-03
EXacT . 1.000 1,000 1,000 1,000
3 Loc " 0.0 0.0 0.0 0.0
PREOR 2 . 4.120-01 | 1.790-01  3.330-02  1.03p-03
PracT . 1.000 1.000 1.000 1.000
1 roc . 00 0.0 0.0 0.0
(b) DR3 ‘ERROE & . 4.120-01  1.790-01  3.330-02  1.03D-03
BIACT . 1.000 1.000 1.000 1.000
1 1cc . 0o 0.0 0.0 0.0
ZeBOR 8 . &.120-01  1.790-01  3.330-02  1.030-03
Eract . 1.000 1.000 - 1.000 1.000
I 10¢ . 0.0 0.0 . 0.0 0.0
ZEROR 16 . 8.120-01  1.79p-01  3.330-02  1.03D-03
piact . 1,000 1.000 3.000 1.000
1 L0¢ . 00 0.0 0.0 0.0
BEAPAC 05/76 BPOY4 ASTNPTOTIC SOLUTION AO+=1,HGO=1,05,X:(0,1},BC (I, 1) ,5=0

NAX. ABS. SCALAR PLOX ERROR 4ND LOCATION (GLODAL)

I1 0. OP INESH IUTERVALS ,Jd; MO. OF 3U POINTS
3. 2 [} [} 1
T .
setaseanttatettritessattenttencrerterecsconesacsriasee
ZREOR 1 . 3.97D-01 1.66D-01 2.010-02 . -2.56D-02
BXACT « 1.000 1. 000 1.000 3 0.306
T 1L0C . 0.0 0.0 0.0 1.000
ERROR 2 . 4.100-01  1.770-0%f  3.77D-02  1.28D-u7
BXACT . 1.000 1.000 0.621 °  0.62)
T Loc . 0,0 0.0 0,500 0.500
N
(c) DGF ERROR & .  4.12D-01 1.78D-01 3.370-02 4.16D-03
XACT .« 1.000 1.000 0.788 0,748
1 toc . 0.0 0.0 0.250 0,250
———
PRROR 8 . 6.12D-01 1.780-01 3.330-02 1.850-03
EXACT . 1.000 1.000 0.ne8 0,688
I Loc . 0.0 0.0 0,125 . 0.125
: .
BRRON 16 . 4.120-01 1.790-01 3.34p-02 1.250-0)
. BIACT . 1.000 1.000 0.942 0.942
X LoC . 0.0 0.0 0.063 . 0.063
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subtables (a,b,c) corresponding to the three methods listed above. The

entries to Tables 2.la,b,c have the three following items for each of

the twenty problems:

(1) ERROR: the maximum absolute pointwise scalar flux error

HQE”w with assoclated algebraic sign

(2) EXACT: the exact scalar flux solution ¢B(x) at the ERROR

location
(3) X L0C: the mesh point coordinate of the ERROR

Reading the rows of the table from left to right corresponds to an increas-
ing number of angular mesh refinements (J=2,4,8,16) for a fixed spatial
mesh I. Reading the columns of the table from top to bottom corresponds

to an increasing number of spatial mesh refinements (1=1,2,4,8,16) for a
fixed angular discretization J. For example, the entry in Table 2.1la

for 8 angles and 4 spatial mesh intervals has the maximum absolute

scalar flux ERROR 3.32D-02 associated with the EXACT scalar flux of 1.000
at X LOC x=0 in the cell.

Within a given row or column of 2.1a the error for DBl converges,
but not to zero, as the corresponding refinement increases. On each

table of 2.1, the spatial mesh convergence is indicated by connected line

segments., Mesh refinements chosen below this line are clearly not

warranted.

The results in Table 2.la and 2.1b clearly illustrate the faster
spatial convergence of the DB3 method compared to the DBl method. The
spatial error convergence for the DGF method, Table 2.lc, is slower than
the DBl method. In this problem where the scattering and absorption are
nearly equal we see that the asymptotic solution in Fig. 2.lc has an
extremely high gradient with respect to u near uw = 1. This means a large
number of angular points will be required to obtain an accurate scalar
flux. Notice that with eight double Gauss angles the error in the
scalar flux is about 3% for a mesh discretization of .5 mean free paths:
for 4 angles the error is at least 18%. Figures 2.2a,b,c display the
pointwise scalar flux error EE for the three solution methods under

consideration for eight of the twenty problems. The problems displayed



(a) DBl
(b) DB3
(¢) DGF
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BENCHMARK 1.1 SCALAR FLUX ERROR PHIE(X) FOR 1-8 OR M-8
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Figure 2.2. Scalar flux error ¢p for DBl, DB3 and DGF methods

for eight selected discretizations of Benchmark #1
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correspond to the four problems with spatial mesh I = 8 and the five prob-
lems with angular mesh M = 8 (1.e. column 3 and row 4 in Tables 2.1a,b,¢) -
The most significant error reductions occur as the number of angles are
increased. TFor the fixed quadrature set of eight angles the scalar flux

error shows negligible improvement with increased number of mesh cells.

It is evident from these results that the angular approximation 1is
the major factor in the error performance and that high order spatial

methods are of secondary interest.

The angular flux error performance is also available and Tables
2.2a,b,c tabulate the maximum absolute pointwise angular flux error

"EEHm with algebraic sign.

Tables 2.2a,b,c are organized similar to Tables 2.la,b,c with one

additional entry:
MULOC: the angular coordinate of the maximum flux error

The angular flux error tables illustrate the same general error conver-
gence patterns as in the scalar flux case. The error is not weighted in
this case, therefore the angular location must be considered when applying
the error contribution to the scalar flux. Figures 2.3a,b,c, 2.4a,b,c
and 2.5a,b,c illustrate the angular flux error traverse along the p axis
for three fixed x values (0.,.5,1.). Each figure has three subplots
corresponding to the three methods under consideration. The same subset
of eight problems is chosen for illustration as in Fig. 2.2. The quali-
tative error behaviour is similar to that observed when studying the
scalar flux error; the angular approximation is critical. Note that at
the cell boundaries the error for the incident flux is zero since inci-

dent flux boundary conditions are employed.

Tables 2.3a,b,c and 2.4a,b,c are two additional tables available to
study the average pointwise scalar flux error and the relative sum error
of the pointwise flux errors for the (global and boundary) domain for the
twenty discretization sets. For the three methods the average flux error

converges to equivalent limits, but the convergence is more rapid for DB3.

The relative sum error illustrates the superior accuracy of DB3 to

DBl or DB4.
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Table 2.2. Maximum absolute signed angular flux error -“_\Q "
tabulated for twenty space/angle discretlzatlon
sets of Benchmark #1 for the DB1, DB3 and DGF methods

L ]
BEAPAC 05/76 BPEVLt ASYRAPTOTIC SOLOTION AO+e1,WU0=1.0%,I:(0,V),8C(L,I),5=0

NAX. ABS. VECTOR PLUX ZRROR AND LOCATION (GLORAL)

It %0, OF RNESH INTZRVALS J: ¥0, OF BO POIMTS
J . 2 L] L] 1%
T . :

9.290-02 5.830-02 7.3RD-02 1.19%0-01

PXACT . 0.189 0. 398 0.870 t.487

X LcC . 1.000 1.000 1.000 1.000

apLoc . 0.500 0.789 0.9 0.9230

BRAOR 2 . 7.610-02  4.660-02  2.010-02  2.750-02

EXACT . 0.174 0.199 0.870 1,087

I L0C « 0.0 0. 500 1.090 1.000

Autoc . ~0.500 0,211 0.931 0.970

TEROR  § . 7.560-02  8.200-02  1.080-02  6.833-03
(a) DB1 EXIACT < 0N 0.213 0.216 1.u87

I L0C « 0.0 0.0 0.250 1.000

#oLoC » =0.500 -0.2M1 0.069 0.9€0

PREOR 8 . 7.57D-C2  4.190-02  B.43p-03  1.792-03

EXACT 0. V78 0.213 0,249 1.427

3 10C . 0.0 0.0 0.0 1.000

noLoc . =0.500 -0.211 -0.069 0.982

FRROR 16 . 7.570-02 4.190-02 8.63D-03 $.370-08

EXACT « 0.%78 0.213 0.241 1.487

2 10C . 0.0 0.0 0.0 1.069

svLoc « =0.500 -0.211 -0.069 0.980

BEAPAC 05/76 BPIL2 ASYSPTOTIC SOLOTION AO+=1,300=1.05,F:{0,1),BC(X,I},S5=0

BAY. ABS. VECTOR PLUXI ERROR AMD LOCATION (GLOBAL)

I3 %0. OF IAESH INTERVILS J: RO, OF HU POINTS
J . 2 . [} 16
1 .

PREOR 1 . 7.570-02 §.080-02 7.15D-03 ° =1,590-03

EIACT . 0.174 0.213 0,185 1,487
I LoC « 0.0 0.0 0.0 1.000
agLoC =0.500 -0.2m =0.330 4.980
ETEROR 2 . 7.57D-02 | 4.180-02 8.31D-03 2.580-048
BXACT . 0,178 0.213 0.241 0,238
-X L0C . 0.0 0.0 a.c¢ 0.9
mgLoC . =0.500 =-0.211 -0.069 -0.102
BRROR & . 7.570-02 4.190-02 68.430-03 2 630-08
(b) DB3 ) EXACT . 0.1 L] 0.252
‘ I LoC . . .0
agLoc . -0.500 -0.020
EREOR 8 . 7.570-02 4.19D-02 0.430-03 : 2.650-08
BXACT . 0.178 0.2%3 0.241 0.252
T LoC . 0.0 0.0 0.0 0.0
BgLOC . =0.500 =0.211 =0.069 -0.020
PREGR 16 . 7.570-02 4.190-02 8.430-03 2.650-_0_!
BINCT . 0.174 0.213 0.241 . 0.252
X Lo0C . 0.0 9.0 0.0 0.0
BOLOC . =0.500 «0.211 «0.069 =-0.020
BEARAC 05/76 EPOLA ASTHPTOTIC SOLUTION AO+=1,B90=1.05,X:(0, %) ,BC(I,I),5=0

#AX, ABS. YECTOR PLUX ERROR AND LOCATION (GLOBAL)

I: §0. OF IRESH INTERVALS J: WO. OF AU POLNTS
B 2 . s 1
I
e teentarearetaneaae e aeanaaatnateonastsasnanrtnres
SRROS % . 6.025-02  3.090-02 <=6.790-02  -1.220-01
TXACT « 0.178 0.213 0.870 1,097
1 16¢ I o 0.0 1.000 1.000
nutoc . -0.500 —0.211 o911 0.980
EYRON 2 : 7.330-02 °  8.03D-02 2.43p=02 3.%20-92
xxact L0l 0,199 1.a00 2,39
2 1oc - 6,500 0.500 0.500
noLoc . -0ls00 0,211 0,931 0,980
PABOR & . 7.510-02  A.100-02  9.26b-03  9.610-03
(c) DGF xract D e 0,213 0,216 3,038
I LOC . 0.0 0.0 0.25%0 0.250
aorLoc . -0.500 -0, 219 0.069 0. 980
ERROR 8 . 7.55D-02  4.16D-02  6.330-03  2.51p-03
1act Nt 0.213 0,218 3222
1 L0c . 0o 00 0.125 0.125
aotoc . -0.500 —olan -0.069 0.980
ERNON 16 o0 7.570-02  €.180-02  £.370-C3  6.86D-08
R1acT . 0 M 0,213 021 - V.89
1 10¢ . 0.0 0.0 0.938
aoLoc . -0.211 -0.069 0.980
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BENCHMARK 11 ERROR TRHVERQES PSIE(O,MU) FOR I-8 OR M-8

0w o

a=-psSIELO, M) 8,2
o=-PSIELO,MU) B, 4
a=PSIECO,NU) 1,8
+=pSIELO, M) 2,8
x«PSIELD,NU) 4,8
e=PSIELQ,MU) 8,8
v-PSIE(O,MUI1E,8
s-pSIE(D,M) B,16

(a) DBl

;ﬂf”./ﬁék )

—— - v »e - oo
=1+0 -8 06 -0-4 -0-2 -0 0-2 0-4 0-8 o-8 16
(¢ V]

BENCHMARK 12. ERROR TRHVER%;S PSIE(O,MU) FOR I-8 OR M-8

o~-PSIE(O, M) 8,
o-PSIE(O, M) B,
a=-PSIE(Q, M) 1,
+=-PSIE(Q, M) 2
x=PSIE(Q,M)) 4
e ~PSIEIO,MU) 8
v -PSIE(Q,HU) 16

2
4
8
8
8
8
8
m-PSIEO, M) 8,1

)16
(b) DB3

-}
5
— EE\\_

T Y Ber
~1-0 -0-8 ~0-8 -0-4 -0-2 o0-¢ o-2 0-¢ 0-6 o-8 1-0

o-PSIE(0, M) 8,2
©-PSIE(D,MU) 8,4
a=-F3IEW0,M)) 1,8
+~PSIE(Q0,MU) 2,8
x=PSIE(0,MU) 4,8
*=-PSIE(0,NU) 8,8
v=PSIE(0,MU) 16,8
®=PSIE(Q, M) 8,16

(c) DGF

Figure 2.3, ‘Angular flux error traverses wE(O,u) for DB1, DB3, and DGF
methods for eight selected discretizations of Benchmark ]
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BENCHMARK 11 ERROR TRHVERSES PSIE(.5,MU} FOR I-8 OR M-8

/:-PSIEI.S,HU) 9,2
8 o=PSIEL.5,MU) 8,4
a=PSIE(.S,H0) 2,8
/ +=PSIE(.5,MU) 4,8
3] coRIEC S 168
& v=PSIEL.5,MULB, 16
(a) DBl
2]
-3
é
é':\bJ
- R 4
v il _ = ?.., _ o _ _ e
40 08 08 04 02 ;bo 0-2 04 0-6 08 140
BENCHMHRK 12 ERROR TRAVERSES PSIE(.S,MU) FOR I-8 OR M-8

Q
/PSIE( 5,MU) 8,2
] PSIEL.S.NU) 8,4
a=PSIE(.S.M 2.8
) +=PSIE(.5, 1) 4.8
3 © x==PSIE(.S,MU) 8,8
2 e=PSIE(.5,HU) 16, 8
° v=PSIE(.5,HU)8, 16

(b) DB3

o-PSIEL.S, M) 8,2
o=FSIEL.S5, M 8,4
4 =-PSIEL.S,MD 2,8

o =PSIE(. 5 ﬂU)lG 8
v=PSIE(. 5 nulse, i6

(¢) DGF

.>

Figure 2.4. Angular flux error traverses Vg (.5,u) for DBl, DB3, and DGF
methods for eight selected discretlzation sets of Benchmark #1
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BENCHMARK 1.1 ERROR TRHVEngS PSIE(1,MU) FOR 1-8 OR M-8

0=-PSIE(1, MU} 8,2
o=PSIE(1, MU} B, 1
a-PSIE(1,NU) 1,8 s
+=PSIE(1,1U) 2,8 é
x=PSIE(L,HU) 4.8
e=PSIE(I.N) 8.8 )
v=PSIE(1,HU) 16,8 &
-3
é
8

e=PSIE(l, NU) 6,16
(a) DBl

BENCHMARK 12 ERROR TRHVERSES PSIE(1,MU) FOR I-8 OR M-8

o=-PSIE(]1, N
o~PSIE(]1,MU)
a=FSIE(L,NU)
+=PSIE(], M)}
x«PSIE(],NU)
e =PSIE(1, M)
e =PSIE(1,MUIL
=-PSIE(L, M) B

~
[\ )
0-08

O+ M) =~ D D

RN N NN N

= DA OW®D® b

8
(b) DB3

re
=-1-0 -0-8 -0-6

0-PSIE(L,NU) 8
0=-PSIE(1,MU] 8
s =PSIE(L, ML) 1
+=PSIE(L, A 2
x=PSIE(L,MU) 4
e =PSIE(L,NU) B
v =PSIElL, MUY 16

,2
, 4
,8
,8
,8
,8
,8
I-PSIE(I M 8,16
| g 2 o o all r *\‘:_L\—“

0

4

0

é
N
Q

.!\
o\ 003
L

\ad -
-4-0 '0" -0-6 ~0-9

(c) DGF

PSIE
AL

<08
A

-’.m

Figure 2.5. Angular flux error traverse (l,u) for DB1, DB3 and DGF
methods for eight selected discretization sets of Benchmark #1
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Table 2.3. Average absolute scalar flux error for DB1,
DB3, and DGF methods for twenty discretiza-
tion sets of Benchmark #1

anIC 03/7¢ BPOLY ASYAPTOTIC SOLUTION A0vel,NG0=1,08,T:(0,1) ,8C (Z,1) 090

ATG. A98, SCALAD FLUX ERROR (GLOBAL)

It W0, OF IAZ3H ISTERVALS J1 O, OF ®0 roINTs

3. 2 . ' "

r
nROR 1 : 3.190-01 1.880-01 3.760-02 1.300-02
TR 2 : 3.090-0Y 1.300~-01 2.6850-02 8. 320-0)
BRROR L] : 3.07-01 1. 360-0% 2.60D-02 1.750~0)
REOR [ ] .. 3.06p-01 1.350-01 2.%ep-22 1.030-03
ZeROR 16 : 3.060-01 1.350~-01 2.5)p-02 'l.llb-l)l

ARS. SCALAR PLOX 380K (BOUNDAAT)

(a) DB1

Iz O, OF INESH INTERVALS J: R0. OF BU POINTS

4 : 2 . L] %

T .

Geeeeaatataritnentaeatteitor arastaresaersaranaranneany
pidl ) t : 3.19p-0% 1. 830-01 3.76p~-02 1.200-02
ReRO 2 : 3.050-01 1. 320~01 2.650-02 3.400-03
BRROR & : 3.020~01 1. 30D-0% 2,480-02 1.800-03
Jasor 8 : 3.010-01% 1. 300-01 2.83p-02 $.130-08
siron 16 : 3.010-01 1.300-01 2.42p-02 7.089D-08
BRAPAC 03/76 BP¢12 ASYAPTOTIC SOLOTION AO0+4=1,W00=1.0%5,X1(0,1) ,BC(X,I) ,9=0

A¥G. MBS, SCALAR PLUX EREOR (GLOBAL)

, OF 80 PpOINTS

X1 §O. OF THESY INTERVALS Jz
3. 2 s ' "
1.

3.01p-01 1.2%D-01 2.350-02 $.69D-08
3.080-01 1.320-01 2.88D-02 7.01D-08
3.05p-01 1.3680-0% 2.890-02 T.69D-08%
3.06p-01 1.350-01 2.57L-02 7.76D-08

3.060-07 1. 35001 2.520-02 7.810-00

« ABS. SCALAR £1UI ERROZ (BODNSDART)

(b) DB3

I3 B0, OF X&2SH INTEZRTALS P H . OF B0 POINTS
3. 2 - . "
E

3.010-01 1.200~-01 2.3%0-02 3.69D-08

BR208 1

EEO? 2 . 3.090-01  1.290-01  2.81-02  7.350-08
w103 8 . 3.010-0f  1.300-01  2,410-02  7.889-0%
RO 8 . 2.010-01  1.300-01 2.870-02  7.a8D-0a
2202 16 . 3.010-01  1.30D-01  2.810-02  7.88D-08
sraric 05/76 BPO L4 ASYHPTOTIC SOLOTION 40+=1,800%1.03,X3(0,1) ,3C(L,N ,5=0

A¥S. ADS. SCALAR FLOX ERAGA (GLOBAL)

I3 BO. OF TIAZSH INTEAYALS  J: BO. OF SU POINTS
3. 2 . . "
T .
EPBOR Y . 2.830-01 11001 1.890-02  1.300-02
teoz 2 . 3.050-01  1.350-01  2.490-02  S5.a70-03
08 8 . 3.060-01  1.350-01  2.570-02  1.810-03
mIOE 8 . 3.060-01  1.350-0%  2.530-02  1.030-03
2O 16 . 3.060-01  1.380-00  2.530-02  6.490-08
(C) DGF A¥G. DS, 3CALAR PLUZ EN20R (BOUNDAAT)
I9 RO, OF 10ESH INTERVALS J: 50. OF RU ROIETS
.
. 2 . ’ N
£
BIOB Y L 2.830-01  1.140-01  1.490-02  1.900-02
ERROS 3 . 2.900-01  1.270-01  2.130-02  1.010-03
BM0B & . 3.00D-01  1.290-01  2.380-02  5.35D-08
B0R 8 . 3.000-91  1.295-01  2.390-02  $.720-0%
BI0R 16 . 3.010-01  1.290-01  2.410-02  7.06D-0%
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Relative sum error of pointwise scalar flux

for DB1, DB3 and DGF methods for twenty
discretization sets of Benchmark #1

Table 2.4.

BBARAC 03774 PPELS BHTAPTOTIC SOLOTION A0+o?, BUC=1.03,71 10, 1) ,BC (1, 1),0=0

§31. ABS, SCALAD PLUK BB (OLOBAL)

T4 DO, CF XAZSA THTERVALS Jr 80. OF S0 pOISTS
3 2 . ) "
1 .

§.600-01 2.330-00 $.43p-02 1.800-02
20-01 2.080-0V 4.260-02 6.940-0)

4.670-01% 2.060-01 3.960-02 2.460-0)
«.700-01 2.000-01 3.900-02 1.590-0)

4. 730-01 2.090-01 3.%00-012 1.310-03

SEL. AB3. SCALAR FLOUZ ES10R (DOUNDART)

(a) DBl

It 90. OF INEIE INTEATILS J: ¥C. OF B0 P
U 2 . . 1
T .

8.600-01 2.1)0-01 3.430-02 1.080-02
4.40D0-01 1.910-01 3.030-02 $.910-0)

& . a.3D-01  1.880-01  1.58D-02  2.030-0)
T 4.330-01  1.670-01  3.310-02  1.323-03

4, 350-0% 1.870-01 3.a90-02 1. 14003

9BARAC 05/76 SPILL ASTUPTOTIC SOLOTION A0ewY, KDO=1.0%,2: (0,1} ,0C(X,I) 320

WEL. APS. SCALAR FLOUZX ERAOR (GlOBAL)

X1 90. OF IAESH INTERVALS J: 90. OF HV POINTS

3. 2 . . .

I .
8000 1 : 4.340~01 1. 050~01 3.3%0-02 8.210-04
(1] 2 : a. %001 1. 98001 3.450-02 1.11p-03
3aR09 . : w.68D-01 2.0ap-01 3.790-02 1.170-03
) 1] [ ] : 8. 70D-01 2.070-0% 3.8%0-02 1.490-03
sapcs 16 : 4.720-01 2.090-014 3.890-02 1.310~0)

(b) DB3 BRL. 43S, SCALAR FLOI ERROR (BOONDARY)

23 §0. OF ¥ 4 INTRRVALS Ji HO. OF &0 POISTS

L] L] 1.

[ L]0 ] \] 8. 380-01 1.050-01% J.390-02 2.210-08

meon 2 : 4.350-01 1. 07001 3.480-02 . V.04 3

38203 & : 8.350-014 1.070-01 3. 080~-02 1.080-03 -
20002 [ : 4. 350-01 1. 870-04 J.a8p-02 1.000-0)

o 16 : 8.350-01 1. 87001 3.480-03 1. 08083

BRBAPAC 03/78 ’ e lﬂ. ASTAPTOTIC SOLUTION A0+a),BU0=1.09,1:1(0,1),0C(I.0),8=0

BEL. 89S. SCALAR FLOT ZRAOR (GLOBAL)

It BO. OF INEIW INTERVALS Jt 0. OF WO POlNTS
3. ? [} ] 1"
T .
1 . 2001 1.480-01 2,150-02 2.70-02 N
7 . ase0-01 2.010-01 4.010-02  0.180-0)
" . s.6%0-01 7.650-01 3.320-02 2.7135-0
$ . 8. 70-01 2.000-01 3.090-02 1.390-0)
.
1" 4. 720-01 2.090-01 3.%00-02 1.212-9)
. BBL. ABI. SCALAD FLOI T
(C) DGF ¥ (BoUROART)
14 ¥0. OF IATSE INTRAVALS J1 90, OF we P0IPTS
.
. 2 L} . "
W

. 120-01 1.680-01 2.190-02 2. 740-02
0. 3t0-01 1.830-0% 3. 100-02 2.610-90)
. 330-01% 1.060-00 3. J80-02 8.010-08
. 380-01 107001 3.%40-02 0. 3%-00

4, 3%0-01 1.879-01 3.800-02 1.030-0)
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2.2.2 Benchmark Problem #2, a transient eigenmode

The cross sections and dimensions of BP1l apply to the cell in BP2.
Here the transient eigenvalue spectrum |v| < 1 is discretized into 2N+2
nodes {vin|n=0,l,...,N} = {#0,+.94919,%.99,%1.} for N = 3. The choice
of the v, is arbitrary. In this case we choose to generate the benchmark

problem defined by
v (x,1) = g (x,1)

which corresponds to Eqn. (1.9) with all a;, = 0 except for ay = 1,

where q+0(x,u) is the mode corresponding to the interval 0 < v < .94919.

Figure 2.6a,b,c illustrates the angular and scalar flux traverses
for BP2. Note in particular that the q+o(x,u) mode contains a flux dis-
continuity along u at p = 0 for the cell boundary at x = 0,

The same twenty sets of space/angle mesh discretization are applied
in BP2 as in BPl and incident flux boundary conditions are given by

wB(x,u) at the cell boundaries. The maximum absolute scalar flux error
”g_E"°° with algebraic sign is tabulated in Table 2.5a,b,c for each of the
twenty problems. Comparison of the results for DB1, DB3 and DGF shows
that the DB3 method is more accurate than DBl and DGF, a result expected
and observed in BPl. Counter to BPl, however, error convergence in BP2
is not achieved in Table 2.5a,b,c for J > 2. The DGF method has a better
error performance than the DBl method for BP2; the magnitude of the

tabulated errors are two to three times smaller for DGF than for DBl.

Figures 2.7a,b,c display the scalar flux maximum absolute error
traverse for eight selected space/angle mesh refinements (same as BPl).
It is obvious from the figure that the errors are largest for space/angle
mesh discretization outside of an optimal band. The error traverses
for successively finer mesh refinements oscillate about zero with the

maximum error shifting successively closer to x = 0 where the angular

flux discontinuity occurs.

The maximum angular flux error "lpE"°° with algebraic sign is tabu-
lated in Tables 2.6a,b,c. The tabulation indicates that the angular flux
error is much larger for BP2 than for BPl. The largest error is always
located along the M coordinate with minimum absolute value for a given

U discretization J.
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BENCHMARK 2 SCALAR FLUX PHIB(X)

:
3
2z
(a) £
e
3 oo o1 02 03 04 05 06 07 o8 o 10
X
LEGEND
o~ PHIBIX)
BENCHMARK 2 ANG FLUX PSIB(X,MU) MU-(-1,0,.01,.25, .5, 1)
(b)
ND
©-PSIBIN, 1]
o~ PSIBIX,.S)
- PSIBIX,.25)
+ - PS1B(X,.01)
x - PSIBIX,0)
e -PS18(X,-1)
BENCHMARK 2 ANG FLUX PSIB(X,MU) X-t0, .001,.01,.1,.5,1)
(c)

seoee ",,'_“.V'j_{“:/»\ \‘%
! . o

40 00  -06 o1 <2 0 o2 o e
b
ﬁ" AL
LEGIND
©- PSTBI0, M)

o« PSIAI.0CI, MU
&=~ PS1B1.01, 1))
&= PSIBLL ), 0N
x=-POIBLLS, M

e =PSB0, )

Figure 2.6. Flux Distributions for Benchmark #2
(a) scalar flux ¢B(x) .
(b) angular flux traverse Y, (x,u) along x for fixed u
(¢) angular flux traverse wB(x,u) along u for fixed x
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Table 2.5. Maximum absolute scalar flux error ”QE” tabulated

for twenty space/angle mesh discretization sets of
Benchmark #2 for the DB1l, DB3 and DGF methods

BEAPAC 05/76 BP92.1 TRANSIENT SOLUTION A+0=1,NU0=1,05,X: {0, 1),8C(I,T),S=0

MAX. ABS. SCALAR PLUI ERROR ARD LCCATION (GLOBAL)

I: 3O, OF YUEBSH INTERVALS J: NO. OP HU POINTS
3. 2 ] 8 %
.
B L T P PP
ERBOR 1 . -3.97D-02 1. 64D-01 1. 690-01 1.682-01
EXACT . 0,033 0.033 0.033 0.03)
1 10 . 1.000 1.000 1.000 1.900
ERROR 2 . -1.23D-01  9.21D-02 1.100-01% 1.100-01
EXACT . 0.094 0.094 0.094 0.093
X Loc .+ 0.500 0.500 0.500 0.500
ERROR & . ~1.44D-01  3.88D-02  5.87p-02  6.072-02
(Ei) DBl EXACT . 0,177 0. 094 0.177 0.177
1 10C . 0.250 0. 500 0.250 0.250
ERROR 8 . -1.85D-01  3,06D-02  2.44D-02  3.19p-02
EXACT . 0177 0,071 0.261 0.261
T Lo0C . 0.250 0.625 0.125 0.125
ERROR 16 . -3.260-02  9.560-03  1.56D-02
Exact . 0.3 0.261 0.331
I Lo0C 0.063 0.125 0.063
BEAPAC 05/76 BP#2.2 TRANSIEKT SOLUTION A+0=1,3U021.05,1: (0,1),BC(T,X) ,5=0
BAX. ABS. SCALAB PLUZ ERROR AND LOCATION (GLOBAL)
I: BO. OF IAESH INTERVALS 3: HO. OF 84U POIKTS
3. 2 L} ] 16
T .
ERROR 1 . -6.720-02 =7.070-03 =7.210-02 =-7.310-02
EYACT . 0.033 0.03) 0.033 0.033
1 Loc . 1,000 1.000 1.000 1.000
ZRROR 2 . -1.300-01  2,380=02 =3.19D-02  =4.113-02
EXACT . 0.0%4 0.094 0,094 0.094
I toc . 0.500 0.500 0.500 0.500
PREOD & . ~1.450-01  2.73D-02 -2.580-03  =-2.08D-02
(])) DB3 EXACT - 0.177 0.094 0.177 0.177
X roc . 0.250 0.500 0.250 0.250
.  0-®
ERROR 8 . -1.450-01 2.86D-02  5.18D-03 -8.070-03
EXACT . 0.177 0.071 0.261 0.261
T Loc . 0.250 0. 625 0.125 0.125
BREOR 16 . ~1.450-01 | =3.31D-02  6.25D-03 =5.760-08
EXACT . 0,177 0.331 0.212 0.261
I 10 < 0.250 0.063 0.188 0.125
BEAPAC 05/76 BP42.8  TRANSIENT SOLUTION Ae0=1,%UC=1.05,X: (0, 1),8C(I, 1) ,S=0
MAX. ABS. SCALAR PLUX ERS0B AND LOCATION (GLOBAL)
I: WO. OF XMESA INTERVALS 3: NO. OF RO POIKTS
J. 2 L} 8 16
b
BREOR 1 . -7.82D-02  6,14D-02  5.96D-02  5.920-02
EXACT . 0.033 0.033 0.03) 0.03)
I Lcc - 1.000 1.000 1.000 1.000
EBRROR 2 . =-1.220-01  4.88D-02  &.23D-02  &.16D-02
EXACT . 0.094 0.094 0,094 0.098
X Loc . 0.500 0.500 0.500 0.500
ERPOR & . -1.33D-01 3.070-02  2.17p-02  1.98D-02
(C) DGF BXACT . 0177 0.055 0.177 0.177¢
T 10¢ . 0.250 0.750 0.250 0.250
ERROR 8 . ~1.86D-01  2.970-02  1.030-02  9.390-03
EXACT . 077 0.071 0.261 0.261
: X L0C . 0.250 0.625 .. 0.125 0,125
ERROR 16 . -1.850-01 -3.27p-02  6.96D-03  4.730-03
EXACT . 0177 0.331 0.212 0.331
T L0C . 0.250 0.063 0.1e8 0.063



(a) DBl
(b) DB3
(c) DGF

Figure 2.7.
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BENCHMARK 2.1 SCALAR FLUX ERROR PHIE(X) FOR 1-8 OR M-8

0-20,

*15

005 010
s A

PHIE

o=-PHIE(X 8,2
o~PHIE(X) 8,4
a=PHIE(X) 1,8
+=PHIEO 2,8
x - PHIE(X) 4,8
e-PHIE(X) 8,8
e - PHIE(X) 16,8
e =-PHIE(X) 8,15

©15 010 -0:05 0-00

BENCHMARK 2.2 SCALAR FLUX ERROR PHIE(X) FOR I-8 OR M-8

s
&

PHIE
-08

- 10

0-00

o-PHIE(X) 8,2
o0~PHIE(X) 8,4
a=PHIE(X) 1,8
+=PHIE(X) 2,8
x=PHIE(X) 4,8
¢=PHIE(X) 8,8
v = PHIEIX) 16,8
w-PHIE(X) 8,16

018

BENCHMARK 2.4 SCALAR FLUX ERROR PHIE(X) FOR I-8 OR M-8

é

0-08

PHIE
-0-05

0-00

0-PHIE(X) 8,2
o=~PHIEIX) 8,4
a-PHIE(X) 1,8
+=PHIE(X) 2.8
x = PHIE(X) 4.8
o ~PHIEIX) 8,8
v~ PHIE(X) 16,8
w-PHIE(X) 8,16

015 010

Scalar flux error ¢E(x) for (a) DB1l, (b) DB3, (c) DGF

methods for eight selected discretizations of Benchmark #2



Table 2.6. Maximum absolute signed angular flux error i”
tabulated for twenty space/angle discretization

(a) DBl

(b) DB3

(c) DGF
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b,

sets of Benchmark #2 for DB1, DB3 and DGF methods

DIAPAC 05/76

BPI2.1  TRANSIENT SOLUTION Ae0e1,400=1.05,X: (0,1),8¢(1,T) *5%0

MAX, ADS. VECTOR PLOI ERAOE AMD LOCATION (GLOBAL)

I: ¥0. OF XAESH INTERVALS J: #0.
3. 2 .
ERFOR 1 | -2,700-02  3.190-01
EXIACT . 0.042 8.022
X toc 20l 1,000
saLoc . -0.500 0. 211
ZemOR 2 . -2.570-02  1.260-01
BXACT - 0.042 0. 118
I Loc « 0.0 0.500
wotoc . -0.500 0,211
PREOR & . -2.580-02  2.930-02
BRacr » 0.082 0.1315
1 Loc L ool 0.250
BoLOC » *0.500 0.213
ZREOR 8 . ~2.680-02 8.710-0)
EXACT « 0.029 0.075
1 LoC « 0.125 0.625
ayLoc + ~0.500 o.211
OB 16 . -2.700-02  6.620-03
xact . olom 0.039
1 toc 1 0.063 0.513
soLoc . -0.500

BZAPAC 05,76

e.21n

OF NU POINTS

7. 44D-01

5.430-0%
0.030
0,500
0.069

2.920-01

16

9.550-01

BP92.2 TRANSIENT SOLOTION A+0=1,¥00=1.05,X: (0,1) ,BC (I,T),5~0

SAX. ABS. VECTOR PLUX ESROH AND LOCATION (GLOBAL)

1z BO. OF INESHE INTERVALS J: RO. OF 80 POINTS
3. 2 s . 16
T
ERPOR 1 : -2,530-02 ~3,830-02 -q.(90-0% «7.93D~01
ZIACT . 0.002 0.022 0.010 0.009
1 LcC « 0.0 1.000 1.000 1.000
anzoc L -0.500 0,211 0:069 0,020
PEROR 2 . -2.530-02  5.770-03  -1.740-01  =6.370-01
EIACT - 0.042 0.017 0.030 0.025
X Loc L el 0.500 0.500 0.500
noLce . -0ls00 —0.211 0.069 0.020
ERSOR 8 . -2.530-02  6.26D-01 <-3.760-02. =3.80D-01
EXACT - 0.0u2 0.097 0.084 0.0a8
I LOC « 0.0 0.500 0.250 0.250
oioc { -0ls00 -0 211 0. 069 02020
EZRROD 8 : «2.68D-02 6.290-03 -4.190-03 -1.490-01
EXACT . 0.028 0.017 0,244 0.074
I LoC o 0,125 0.500 0.125 0.125
soLoc . -0.500 -0.2n1 0,063 0-020
PRRON 16 . -2.70D-02  6.81D-03  1.49p-03  -2.95D-02
EXACT « 0.03u w019 0.055 0.136
X toc . 0,063 0.630 0,125 0.063
woroc . -0.500 0,211 -0.069 0.020
BZARAC 05/76 BP62.8 TEARSIEHT SOLUTION AeOs1,PU0=1.05,¥: (0,1) ,8C (1,T) ,5v0
RAT, ABS. VEICTOR PLOX EGROR AND LOCATION (GLODAL)
I3 90. OF INESU INTEDVALS J: 30, OF 80 POIMTS
3. 2 . . 1
T .
eeeacssenteteeansesntetnteorsntasasiotatataatrenssinan
.
ERROR 1 . =).6)0-02 1.020-01 3.810-01 4.62D-01
et T olew2 0,022 0.010 ~009
% toc ) 1,000 1000 1.c00
aoroc . -0.500 0. 211 0069 0.020
TRBOR 2 . -2.690-02  2.370-02  1.55D-01 .£50-01
exact L 0.002 0118 0.030 0,028
¥ toc . 00 0.500 0500 0.500
aoLoc . -0.500 0211 0.069 0:c20
.
a3 8.670-03  6.560-02 - 2.04D-01
1act . 0.030 0.088 0.0u8
X L0c : 0.250 0.250 01250
RULOC . -0.211 0.069 0.020
ZRRCR ] : 7.210-03 1.250-02 1.330-01
RIACT . 0.022 0,244 6.078
1 toc . 0.375 0,125 01
MLOC . -0.2V1 0.08% 0.020
.
EEFOR 16 . -2.69D-02  6.63D-03 -2.120-03  5.36D-02
BEACT . 0.o3s 0.019 0.088 0.136
X Loc . 0,063 0,038 0.0 0.063
motoc . -0.500 -0. 211 -0.069 0.020
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2.2.3 Benchmark Problem #3, a one cell least squares modes analysis

BP3 (and BP4) is based on a two cell reference problem with dimen-

sions 0 < x < .5 in cell I and .5 < x < 1.5 in cell II. An isotropic

source SI = ,51s in cell I. Compositions of the two cells are identical
and have the same cross sections defined for BPl. Boundary conditions

are reflecting at x = 0 and vacuum at x = 1.5.
The transient eigenvalue spectrum -1 < v < 1 is discretized into

the following six intervals {v+n} = {0,i.94919,i.999,i1.}. The dis-

cretization is based on knowledge and experience with the behaviour of

the function A(v) for various values of ¢, the number of secondaries per

collision. Case and Zweifel (1967) illustrate (Figure 2.8) the behaviour

of g(v,c) (Eqn. 1.23b) for various values of c.

g(v,c)

26—

2.2~
20
1.8

k6 -

0.6

0.4~ c=20

0.2 =

0.0 | ] ] ] ] | 1 1 !
00 o1 02 03 04 o5 06 07 08 09 10 v

Figure 2.8. The function g(v,c)



63

For simple choices of ¥(u) in Eqn. (1.22a) such as y(u) = pk for
k=0,1,... it is easily shown that g(v,c) plays a dominant role in the be-
haviour of A(v) in the neighborhood of v = 1, e.g. when y(u) = 1 then A(V)
= (1-c)g(v,c) and when y(u) = u then A(v) = v(l-c)g(v,c). For c = .5129
in BP3 we can estimate that g(v,c¢) in Fig. 2.8 has a maximum in the
neighborhood of v = .95. Therefore we chose a value in that neighborhood
as one of the v discretization points. The choice Vig = 0 and Vi3 T 1
are obvious; the choice of Viy = +.999 is necessary to include the

special basis element Eqn. (1.12b) which is designed to approximate the

logarithmic singularity in A(v) for v = #1,

There are six transient eigenmodes qin(x,u) (n=0,1,2) Eqn. (1.13a,b)
corresponding to the v discretization and two asymptotic eigenmodes
qi3(x,u) Eqn. (1.10a,b). Note that we may alternately refer to the .
asymptotic eigenmodes with the notation qoi(x,u) where the subscript 0
is a carryover from the Case notation. 1In cell II of the reference prob-
lem we want to generate a benchmark problem with solution ¢B(x,u) which
is a superposition of the eight homogeneous eigenmodes qin(x,u) (n=0,1,2,3).
The procedure for obtaining the combining coefficients is denoted by
modes analysis. Section 1.1.4 gives two modes analysis methods. For
BP3 the least squares method is chosen with the option of performing
the least squares analysis at discrete directions uﬁ (m=1,2,...,M) along
the incident flux boundaries of the cell; the emergent boundaries are
omitted. An initial reference solution wR(x,u) for the two cell problem
is obtained using the DB3 method with thirteen equally spaced spatial

coordinates X, = .125i (i=0,1,...,12) and a DP, quadrature set for an

8
S16 angular approximation. Figure 2.9 illustrates ¢R(x,U) for traverses
along x for fixed *u = .98,.76,.41,.02 and for traverses along u for fixed
x = .25i (i=0,1,...,6). At the cell interface x = .5 we notice the

angular flux discontinuity due to the source in cell I (Fig. 2.9b).

At the incident flux cell boundaries of cell II, wR(x,u) is linearly
interpolated to obtain a solution wA(x,u) defined at ;he U discretiza-
tion coordinates assigned to the least squares problem. Experimentation
has indicated that for a fixed set {vin} of the transient spectrum dis-

cretization the {“n} should be chosen by the formulas:
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BENCHMARK 3,4 ANG FLUX PSIR(X,MU) MU-+-(.98,.76,.41,. 02)
&7 ,

0-0 D"l 0:2 03 0-1% 0-s 06 0-7 0-8 -9

LEGEND
o - PSIR(X, ,98)
o - PSIR(X, . 76)
2 -PSIR(X, . 41)
+ - PSIR(X, .02)
x = PSIR(X, -.02)
o~ PSIRIX,~. 41)
v - PSIR(X, -.76)
® - PSIR(X,~.5B)

BENCHMARK 3,4 ANG FLUX PSIR(X, MU} X-0,.25,.5,.75,1.,1.25,1.5

(b)

T - SR * =m———
-1-0 -0-8 06 -0-4 -0-2 0-0 0-2 04 0-6 o-8 1-0
My

LEGEND
o~ PSIRIO, M)
o= PSIR(. 25, MU)
2 =~PSIRL.S, f))
+-PSIR(.75,M5)
x=P5IR(1,, U
o~ PSIR(1.25, M)
v =PSIR(1.S, W

Figure 2.9. Angular flux traverses for DB3 reference solution
(h = .125, DPg) - (a) traverse along x for fixed 'y,
(b) traverse along u for fixed x
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(2.253) Mg = vy n=20
\Y + v
_ n-1 nt+l _ _
(2.25b) o= 3 n=1,N-1
(2.25¢) Uy < VN n =N

This choice places the Ho in the neighborhood of the maximum amplitude
of each eigenmode qn(x,u). Note that two zero values of u denoted sym-
bolically by 0 are used to permit treatment of discontinuities at

boundaries and interfaces when they are present.

Figure 2.10 illustrates the resulting benchmark solution wB(x,u) in
cell II generated by the least squares modes analysis using only eight
flux values (four at each incident boundary). The {un} for the least
squares are calculated by Egqn. (2.25) using the {vh} given above. The

display is in the format of Fig. 2.9.

A comparison of wR(x,u) and wB(x,u) along u at the cell boundaries
x = .5 and x = 1.5 and the scalar fluxes ¢R(x) and ¢B(x) is given in
Fig. 2,11, The large rectangular symbols indicate the least squares u
discretization. The maximum relative scalar flux difference is about
47 near the interface at x = .5. The maximum angular flux difference
occurs at the interface x = .5 in the p interval (.9,1.) and is approxi-

mately 9%. Several factors which can contribute to the difference are:

(1) coarseness of the vn discretization

(2) placement of the vn coordinates

(3) placement of the un coordinates for the least squares
(4) value of the parameter o in the Ay-1 modes

The above four items must be thoroughly understood for implementation
of this modes analysis technique as a new numerical transport theory
method. Our present objectives are to generate exact benchmark problems
which are related to physically meaningful problems. wB(x,p) satisfies
the objectives and is used for the benchmark error performance analysis

at the end of this section.
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BENCHMARK 3 ANG FLUX PSIB(X,MU) Mu-+-(1,.5,.1,0]

&
3
S
24
(a) gz-
(-
g.
LEGEND
o-PSIBIX, 1)
o-PS1B(X, .5}
s -PSIBIX, . 1)
+=PSIBI(X,+0}
x - PS1B(X,-0)
s - PSIBIX,-.1)
v-pSIBIX,-.S)
» - PSIBIX, 1)
BENCHMARK 3 ANG FLUX PSIQ(X,MU) X=-.5,.75,1., 1.25,1.5
o1
ke
o
(b) gé'

3

T os w8 0 . 0-0 o2 04 06 N 10
w
LEGEND

o= PSIBL.5, M)

o-psiB(.75,mn

s - PSIB(I. M)

«=P518(1.25,M)

x = PSIB(1.5, )

Figure 2.10. Angular flux for Benchmark #3
(a) Angular flux traverse Y (x,u) along x for fixed u
(b) Angular flux traverse ‘1’3("'“) along u for fixed x
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BENCHMARK 3 SCALAR FLUX PHIR(X) VS, PHIB(X)

w
.
aQ

- \
(a) g_'é— \s\\*

2" Nﬁ%\
E“B«\_{B_\
S mnah
6—4
Q
e Y — T . T Y T T T T
D-5 0.6 0-7 0-8 0-9 1-0 1.1 1.2 1-3 14 i*S
X
LEGEND
o~ PHIR(X)
o - PHIB(X)

BENCHMARK 3 PSTR(X,MU) VS. PSIB(X, MU

Q
~ T
&
[’
%
v
o /
~
-
() ity

(2]

o
[yed
o

MU
LEGEND
0 - PSIR(.S, M)
o~ PSIR(1.5, M)

a~PSIB(.5, MU
+=PSI3L.5,M

Figure 2.11. Comparison of reference and benchmark solutions for Benchmark #3
(a) Scalar flux ¢R(x) vs. ¢B(x)
(b) Angular flux wR(x,u) vs. wB(x,u) at x = ,5 and x = 1.5
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We now examine some details of benchmark solution wB(x,u). Figure
2.12(a) illustrates the transient combining coefficients A(tvn) = ain
(n=0,1,2) obtained by the least squares. Also included is A(%l) = 0.

The asymptotic coefficients aoi are tabulated at the lower right of the
figure. Notice that a.,- =~ 0 and A(v) * 0 (v < 0). This is attributed to

0
the vacuum condition at the boundary x = 1.5 since the coefficients a_,
correspond to modes q (x,u) which represent contributions of a source at
-n
the right boundary of the cell. The behavior of ant and A(v) (v > 0) are

likewise controlled by the incident flux distribution at x = .5.

The scaled modes a_ q+n(x,u) are illustrated in Fig. 2.13 and 2.14.
In't
wB(x,u) is included to illustrate the superposition of the modes. Modes

a and a corresponding to v, = 0 and v, = .94919 and the asymptotic

oo 14 0 1
mode a +q.+ are easily observed for v > 0. Notice that in Fig. (2.13a)

070
the flux discontinuity at py = 0 is largely contributed to by a The

q..
0°0
rapid decay of q, as illustrated in BP2 forces wB(x,u) to behave

similarly, so that at x = 1.5 the discontinuity is relatively very small.

The eigenmode qz(x,u) is barely visible in Fig. 2.13, but in

Fig. 2.14a,b two scale magnifications illustrate the mode behaviour for
.90 < u < 1. and .99 X w2 1. respectively., In Fig. 2.14a we note that
the steepness in the gradient of 9, for .99 < u < 1. cannot be matched by
any of the other modes including the asymptotic q0+ so that wB(x,u) has a
10%Z drop at p = 1. This deficiency 1s reflected in the results of the
least squares which includes a data point at u = 1. Figure 2.11 shows
that the least squares matches the boundary point p = 1 excellently, but
away from the boundary the 10% difference reappears. Additional least

squares points and varied placement are under investigation.

Figures 2.12a, 2.15, 2.16, 2.17 and 2.18 illustrate BP3A a problem
similar to BP3 in all respects except that the parameter o = 1 instead of
@ = ,18, where a is the exponent of the Chapeau function in qN_l(x,U).
The main difference we note is the error in wB(x,u) is reduced in the

interval .95 S H <1. In the expanded scale plots, the change in q2 is

quite evident. The mode has a well defined minimum near u = .999 in con-

trast to BP3 where the mode continues decreasing until u = .99975. The
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 BENCHMARK 3 A(NU) FOR CELL II FOR N-3,ALPHA-.18

[=]

(a)

LEGEND .
NUC~ 1-0500 o=-fi(NU) CELL II AQ+- 0-2556 AO---0-0033

BENCHMARK 3A A (NU) FOR CELL II FOR N=3,ALPHA-1.

(b)

LEGEND
NUO- 1-0500 o-A(NJ) CELL II A0+~ 0-2443 AO0---0-0088

Figure 2.12. Combining coefficients A(v) and apt from least squares
modes analysis
(a) Benchmark #3 with ¢ = .18
(b) Benchmark #3A with a = 1.
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BENCHMARK 3 EIGENMODES A(N)»Q(X,MU,N) TRAVERSE AT X=.5

(a)

o

%

(b)

NO,
©0-0(1.5,My, 0+)
©+-0(1.S,HU, +0)
a=0(1.5,1U,1)
+=0(1.5,1U,2)
x=0(1.5,nU,0-)
®=0(1.5,HU,-0)

Figure 2.13. Contributions of elementary solutions anqn(x,u)
to wB(x,u) in Benchmark #3 .
(a) 1 traverse at x = .5, (b) u traverse at x = 1.5
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BENCHMARK 3 EIGENMODES A(N)»Q(X,MU,N) AT X-.5 MU(.S,1)

(a)

PS1B

03

EGEND
©-0(.5, M, 0%)
o=0(.5, N, +0)
a=0(.5,MU,1)
+=-0(.5,MU,2)
x=0(.5, 1, 0-)
*=0(.5, MU, -0)
v=0(.5,10,-1)
»- 01,5, 10, -2)
*=P5iB1.5, 1)

BENCHMARK 3 EIGENMODES A(N}»Q(X,MU,N) AT X-.5 MUC(.89,1)

00

<3

EGEND
©~0(.5,M,0%)
o=0t.5,M,+0)
s=~00.5 M 1)
+=0(.5,M,2)
x=0(.5, MU, 0-)
o =0(.5, MU, -0)
v-0(.5,M,~1)
a~0¢(.5,M,-2)
w~PS1B1.5, 1)

Figure 2.14. Detailed enlargement of elementary solution
contributions to Benchmark #3
(a) .9 <u<1, (b) 99 < <1
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BENCHMARK 3A ANG FLUX PSIB(X,MU) MU-+-(1,.5,.1,0)

0

(a)

PsSIB

o~ PSIB(X, 1]

o-PSIBX,.5)
s -PSIBIX,. 1)
+=PSIB(X,+0)

x = PSIB(X,-0)
o« PSIBX,-.1)
v ~PSIBIX,-.5)
®-PSIB(X,-1)

BENCHMARK 3A PSIB(X,MU) X-.5,.55,.75,1.,1.25,1.45,1.5

(b)

0-PSIB(.5,HU)

o-PSIB(.55, MU
&= PSIBL.75, HU)
+«P518(1.,AU)

x = PSIBI1.35, M)
+~PSIB11. 45, HU)
v-PSIB(1.5, AU

Figure 2.15. Angular flux for Benchmark ##3A

E:; 2ngular flux traverse wB(x,u) along x for fixed u
ngular flux traverse vg(x,u) along u for fixed x
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. BENCHMARK 3R SCALAR FLUX PHIR(X) VS. PHIB(X)

(-]

(a) Eé
x|
© 0.8 0"6 0"7 UI'B 01'9 l"ﬂ ll'l . 11‘2 l"s l"i 1S
X
LEGEND
o-PHIR(X)
o -~ PHIB(X)
BENGHMARK 3R PSIR(X,MU) VS. PSIB(X,MU)
(b) | %3'

LEGEND
o - PSIR(.S, MU}
o -PSIR(1.5,MU)
a - PSIB(.S, MU}
+ = PSIB(1.5,MU)

Figure 2.16. Comparison of reference and benchmark solutions for Benchmark #3A
(a) Scalar flux $r(x) vs. ¢g(x)

(b) Angular flux wR(x,u) vs. yYg(x,u) at x = .5 and x = 1.5
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BENCHMARK 3R EIGENMODES A(N)=0(X,MU,N) TRAVERSE AT X=.5

(a)

@)
™
Zz
EEEEP
+
e

LIS I B I I )
0000DDD
- —-

IR IR IS
nunnnnnm

~

oexX+4»00
c
-
o
1

ZXITXITT

(=4

e W N NN

(=
-
[}
-

V- - ,

B-0(.5,MU,-2)
% - PSIB(.S,MU)

BENCHMARK 3A EIGENMODES A(N)=Q(X,MU,N) TRAVERSE AT X=1.5

Q

(b)

EGEND
©-0(1.5,MU, 0+)
0-0(].5,MU, +0)
4-0(1.5,M0, 1)
+=0Q(1.5,M,2)
x=0(1.5,MU, 0-1
¢=0(1.5,MU, -0)
v-0(1.5,HU, -1}
®=-0(1.5,MU, -2
% = PSIB(1.5,MU)

Figure 2.17, Contributions of elementar
Benchmark #3A
(a) u traverse at x = +5, (b) u traverse at x = 1.5

y solutions qn(x,u) to lpB(x,u)
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BtNCﬂMHRK 3A EIGENMODES A(N)»Q(X,MU,N) AT X=-.5 MU(.9,1)

10

0-S

(a)

-PS1B

0-0

1]

=10

BENCHMARK 3A

EGEND
o-0(.5,MU,0+)
o-0(.5,MU,+0) -
s-0(5,MU,1)
+-0(.5,MU,2)
x=-0(,5,MU,0-)
e-0(.5,1U,-0)
v=-0(.5,MU,-1)
®-0(.5,MU,-2)
= PSIBL.5, M)

EIGENMODES A(N)I=Q(X,MU,N} AT X-.5 MU(.99,1)

1;0

TP o

3 "
® a
£.]
R G
34

=-1-0

Figure 2.18.

EGEND
0-0(.5,MU,0+)
o-01.5, MU, +0)
8=0(.5,MJ,1)
+-0(.5,MU,2)
x=0(.5, MU, 0-)
*=0(.5,MJ,-0)
v=-0(.5,M0,-1)
w=-0(.5,MU,-2)
% - PSIB(.5,HU)

Detailed enlargement of elementary
solution contributions to Benchmark #3A
(a) .9<pu<1, (b)-.99<uc<1
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difference in behaviour of a2q2(x,u) in BP3 and BP3A, taking into account
the different scaling factors ays indicates that as a is decreased the
minimum point of q2(x,p) is continuously decreased and moves closer to
U = 1. The difference in scaling factor a, is expected because of the

difference in qz(x,u) at the least squares node u = 1.

Overall the effects of the o parameter do not appear to have major
significance. However, should an improved discretization scheme manifest

itself, then o must be reconsidered.

A set of twenty problems where the space/angle mesh refinements are
varied as in BP1l are solved via the DBl, DB3 and DGF methods. The maxi-
mum absolute scalar flux error ”¢Em» with associated sign is tabulated in
Table 2.7 for each of the twenty problems. The overall error performance
for the three methods shows that the DB3 and DGF methods have errors
about two to three times smaller than the DBl method. The location of
the maximum error is usually the same for all methods and varies depend-
ing upon the mesh discretization. As the number of spatial mesh points
are increased the maximum absolute error shifts towards the boundary at
X = .5. This is partly due to the fact that the angular flux is a maxi-
mum at x = .5 and partly due to the discontinuity at uw = 0 and x = .5.

Figure 2.19 illustrates the scalar flux error for eight of the
twenty problems. The problems are chosen to illustrate the dependence
of the error on spatial and angular refinements. Four problems have
I = 16 mesh intervals with the number of angles varied from 2,4,8 to 16
and five problems have M = 16 with the number of spatial intervals varied
from 1,2,4,8 to 16. For M= 2 and M= 4 or I =1, 2 and 4 (i.e. dis-
cretizations with very large or very small space angle mesh ratios) we

observe large errors.

Table 2.8 tabulates the maximum absolute angular flux error "\PE“OD
with associated algebraic sign for the three methods. The same relative
behaviour of the methods is observed as described in the scalar flux
analysis. Error convergence is obtained for J = 2 and J = 4 for the DB3
method. The angular location of the error consistently is located at the

M coordinates of minimum absolute value (i.e. closest to u = 0) where *le
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Table 2.7. Maximum absolute signed scalar flux error i”iE"m tabulated
for twenty space/angle discretization sets of Benchmark #3
for .DB1, DB3 and DGF Methods

DEAPAC 05776 sP#3. 1 DBY 1 CELL M.A. X(0,.5) S=1, X(.5,1.5) S0, KUO=1.05

KAX. ABS. SCALAR PLUX ERROR AKD LOCATION (GLOBAL)

I: NO. OF YHESN INTERVALS J: WO, OP KU rOINTS
5. 2 4 3 16
T .
ERKOK 1 . -3.320-02  1.200-01  1.19p-01  1.17D-0%
EXacT . 0.1 0.135 0.135 0.135
X Loc . 0.500 1.500 1.500 1.500
ERROR 2 . -6.06D-02  6.320-02  6.52D-02  .230-02
EXnCT L 0.301 0.301 0.301 0.301
X Loc . 1000 1.000 1.000 1.000
ERROR & . -9.03D-02  2.74D-02  3.51p-02  3.200-02
(a) DBl FXACT . 0lade 0.301 0.439 0.439
X Loc . 0.750 1.000 0.750 0.750
ERFOR 8 . =1.01D-01  2.150-02  1.57D-02  1.61D-02
EXACT T 0. 301 0.545 0.545
X Loc . 0.625 1.000 0.625 0.625
ERROR 16 . -1.030-01  2.010-02  7.47D-03  7.15b-03
EXACT . c.u87 0. 301 0.545 0.618
X LoC . 0.688 1.000 0.625 0.563
BEARAC 05,76 BP#3.2 DB3 1 CELL M.A. X{0,.5) S=1, X(.5,1.5) S=0, NC0=1.05

BAX. ABS. SCALAR PLUX ERROR AND LOCATION (GLOBAL)

I: NO. OP XMESH INTERVALS J: HO. OF HU POINTS
J. 2 1 ) 16
1.
EREOR 4 . -3.57D-02  1.20u-02 -4.000-02 -4.21p-02"
EYACT . 0.733 0.733 0.135 0.135
X L0C . 0.500 0.500 1.500 1.500
ERROR 2 . =7.10D-02  1.73D-02  -1.49D-02  -2.13D-02
EXACT . 0.301 0.301 0.301 0.301
X LoC . 1.000 1.000 1.000 1.000
EKROR 4 . -1.00D-01  1.950-02  2.59D-03 -1.17D-02
(b) DB3 EXLCT . 0.439 0.301 0.733 0.439
1 1LoC . 0.750 1.000 0.500 0.750
ERROR 8 . -1.01D-01  1.96D-02  5.020-03 ~5.16D-03
EXACT . 0.545 0.301 0.545 0.545
X Lcc . 0.625 1.000 0.625 0.625
ESROR 16 . -1.03D-01  1.96D-02  5.42D-03  ~1.260-03
EXACT . 0.487 0.301 0.545 0.545
X 10¢ . 0.688 1.000 0.625 0.625
BERPAC 05/76 BPI3.8 DGF 2 CELL H.A. X(0,.5) S=1, X(.5,1.5) S=0, K00=1.05

BAY. ABS. SCALAR FLUX ERROR AND LGCATTON (GLOBAL)

I: NO. P XMESH INTERVALS J: XO. OF HYU POINTS

J . 2 4 8 16

I .
ERROR v . =5.91n~02 2.87p-02 2.550-02 ~2.7ub-02
EXACY « 6,733 0.135 0.135 0.733
X LOC . 0.500 1. 500 1.500 0.500
EHPOR 2 , -5.80D-02 3.33p-02 3.030-02 2.750-02
EXACT . 0.30% 0,201 0.3C1 0.301
X LOC . 1,000 1.000 1.000 1.000
FRPOR & . -9,65D-02 2.00D-02 1.530-02 1. 14h-02

(C) DGF EXACT . 0,439 0.209 0,419 0. 03

X LoC « 0,750 1. 250 0.750 0.750
ERROR 8 . =1.00D-01 1. 940-02 f.2up-03 4,391-03
EXACT « 0.5495 0.2%1 0.545 0,549
1 LCC « 0.625 1.125 0.625 0.62%
ERROR 16 , -1,03D-01 1.95D-02 5.04n-03 1.560-03
EXACT . 0.097 0.3130 [T Y] 0.6n
X 1.0C . O.Lu8 0.930 0.6u1 0.561
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BENCHMARK 3.1 SCALAR FLUX ERROR PHIE(X) FOR I-16 OR M-16
s

>

o-08

a=PHIE(X)
o = PHIE(X) ,
& =PHIE(X) 16,8
+-PHIE(X) 1,16
x=PHIEIX) 2,16
e =-PHIEIX) 4,16
v-PHIE(X) 8,16
s ~PHIE(X) 16,16

BEquNﬁRK 3.2 SCALAR FLUX ERROR PHIE(X) FOR I-16 OR M-16

<—6——1h__e—_*_—ﬁ*__°§‘ﬂ

o =PHIE(X) ’
o=PHIE(X) 16,4
& = PHIE(X) 16,8
+=PHIE(X) 1,16
x=PHIE(X] 2,16
e =PHIE(X] 4,16
v=PHIE(X) 8,16
»=-PHIE(X) 16,15

BENCHMARK 3.4 SCALAR FLUX ERROR PHIE(X) FOR I~16 OR M-16

Figure 2.19.

0=PHIE(X) 16,2
o-PHIE(X) 16, 4
a=-PHIEIX) 1E.8
+=PHIE(X] 1,16
x-PHIE(X) 2,16
e ~PHIE(X] 4,16
v~PHIE(X) 8,16
®=PHIE(X) 16,16

~0-12-0-10 ~0-08 -0-08 ~0-0¢ 0-02 0-00 0-03 0-04

‘Scalar flux error ¢E(x) for DB1, DB3 and DGF methods for

eight selected discretizations of Benchmark #3
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Table 2.8. Maximum absolute signed angular flux error i”YE" for
twenty space/angle discretization sets of Benchmark #3
for DB1, DB3 and DGF methods

BEAPMC 05/76 rP#3.1 DBY ) CRLL B.A. X(0,.5) Swy, X(.5,1.5 S$v0, HUG=1.08

RAX. MBS, VECTOR FLUX ERROR AND LOCATION (CLOBAL)

1: 0. OF XWESH INTERVALS J: ¥O. OF KU YOIWTS
3. 2 4 [ . L3
T .
ERROK 1 . 3.33p-02  2.190-01 4.16D-01 5.030-21
FXRCT 0. 17 0.05%0 0.0u0 0.030
X roc . 1.50¢ 1.530 1. 500 4.500
RuLOC . 0.500 0.211 0.069 0.020
ERROR 2 . -1.620-02  6.720-02 3.,000-01 4.530-01
EXACT . 0.093 0. 160 0. 006 0.079
1 10C . 0.500 1.000 1.000 1,000
nuLoc . ~0.500 0.211 0.069 0.020
EEROR 4 . -1.76D-02 2.19p-02 3.610-01 3.78D-01
(a) DB1 EXACT . 0.093 0.317 0. 142 0.116
X 10C . 0.500 0.750 0.750 0.750
nuLoC . =0.500 v. 21 0.069 0.020
EEROF 8 . -1.750-02  6.74D-03 5.64p-02  2.(7D-01
EXACT . 0.093 0.160 0.2a7 0. 116
X Loc . 0.500 1,000 0.625 0.625
s0L0C . -0.500 0.211 0.069 0.020
EREOR 16 . ~1.70D-02  8.69D-03 1.310-02 1.350-91
EXACT . 0.093 0. 105 0.393 0.188
1 10C . 0.500 1.188 0.563 0.563
nvLoC . -0.500 0.211 0. 069 0.020
BEAPAC 05/76 BP#3.2 D33 1 CELL E.A. X{0,.5) S=1, I(.5,1.5) S=0, BUO=1.05

EAX. 197, VECTOPR PLJY EELOR LND LOCATIOY (GLOUEAL)

I: §O. OF XBESH INTERVALS J: ¥0. OF HU POILTS
2l 2 . ® 16
P
PEROE 1 . -1.730-02  -3.30D-02 -2.250-01 ~4.13D-01
EXACT « 0.093 0.058 0.060 0.036
3 1cC « 0.500 1. 500 1.500 1.500
roLoc « -0.500 0.211 0.069 0.020
TREOF 2 : -1.74p-02 5.010-03 -9.520-02 -3.210-01
EXACT . 0.083 0.056 0.086 0.079
I LOC . 0.500 1. 000 1.000 1.000
r0zoc L -0lsco -0.2m 0.069 0l020
EREOK L} : -1.74D-02 8.10p-03 -2.020-02 ~1.98Dp-01
(b) DB3 EXACT . 0,093 0. 604 0142 0116
X LOC « 0.50G 0.750 0.750 0.750
nurac . -0.500 -0.211 0.069 0.020
ZRKOR 8 : ~1.7u:-02 &,430-03 ~1.77-03 -7.760-02
EXACT 1 0los3 0,069 0.247 0l 146
1 10C 0.500 0.£75 0.625 0.625
BoLoC « =0.500 ~0.211 0.069 0.020
IRROR 16 : =-1.742-02 8.4839-03 1.21-93 -1.56D-02
1Xxc? . 0.033 0.069 0.125 0. 188
X 100 . 0.500 0.675 0.625 0.563
mLeC .« =0.500 -0.,211 -0.069 ©0.020
BEADAC 05/76 BPE:.4 DGP 2 CELL M.A. X(0,.5) 5=, X(.5,1.5) 50, BU0=1.05

BAX. ADPS. YECTOR PLOX ERROR AND LOCATIUY (ClOBAL)

I: PO. OF XKESH INTIRVALS J: NG, OF WD POINTS
3
1

2 L] ] 16

T¥ACT 0.091 0.058 0,040 0.036
X 10C. 0.500 1. 500 1. 500 1.500
ruLoc ~0.5%0 0.211 0,069 0.0

EWROR 1 : -~3.%19-02 6.510-02 1.890-0% 2.310-01

PREOE 2 . -2.N1% 02 1.820-07 8. 6TN-N2 1,3np-01

EXACT « 0,075 0. 130 0. 004 0.079

X 10C » 0,500 1,000 1.000 1.000

naLoC « -2.500 0.21i ¢.069 0.020

ERKOR LIRS PN -] 28 P «25D-03 3.690-C2 1.06p-01

LXACT . 0.093 0.Gun 0.2 0. 116
<c) DGF X L0C . 0,400 0.750 0.7%0 €.750

nsLocC =0.506 =~0.21 0.063 0.020

RRENR e . -4 7u-02 5.16n~03 7.500-93

EXACT + C.097 0. 069 0.2n7

1 10C . 0,500 0. 67 0.67%

nuLoc . =6,5%00 -0.24 0.009

ERROK 16 . ~4.77D-02 N.%9D-03 1. 77M0-00

EXACT « 0,093 0.02¢ 0. 189

X 10C 0.500¢ ¢.813 0.56)

nLoc . =0.500 =0.211 ~0.0069
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effects of the flux discontinuity are greatest. The spatial location of
the error is usually the interior mesh point closest to the left boundary.
Figures 2.20, 2.21 and 2.22 illustrate the angular flux errors along p at
x = .5, 1. and 1.5 respectively for the three methods. The same eight
problems are considered as in the scalar flux analysis. The error sig-
nificantly improves as the spatial mesh size decreases for M = 16.
Considering this result and the results of problems BP1 and BP2, we note
that for space/angle mesh discretization ratios outside of an optimal

band, the errors increase.

Tables 2.9 and 2.10 tabulate the average absolute scalar flux error
and the relative sum errors of the pointwise scalar flux error 3£
respectively. The average error decreases monotonically for all methods
for J = 8 and 16, but for J = 2 and J = 4 the error decreases, reaches a
minimum and then increases. A similar error behaviour is observed in
Table 2.10. For equivalent discretizations the DB3 method 1is more accurate

than the DGF method by about a factor of two.
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BENCHMARK 3.1 ERROR TRﬁVERSEéS PSIE(.S,MU) FOR I-16 OR M-16

a~PSIEL.S, M 16,2
0=PSIE(.S,NU) 16, 4
a=-PSIE(.5,HU) 16,8
+<«PSIE(.5, MU} 1, 16
x=PSIEL.S, MUY 2, 16
e =PSIEL.5,NU) 4,16
v~ PSIE(.5,MU)8, 16
(& DBl &= PSIE(.S, M) 16, 16

a=-PSIE(.5,MN 16,2
o~PSIE(.S,MU) 165, 4
"a=PSIEL.S, MU 16,8
+-PSIEL.5,MN ], 16
x~PSIEL.S5,M 2,16
e -PSIEL.S,MU) 4,16
v =-PSIE(.S,MU)B, 16
s~ PSIEL.S,HU) 16, 16
(b) DB3

o8 o8 ijo

?

] o-PSIEL.S,MN 16,2
(c) DGF 0=-PSIE(.5,MUI 16,4 -
¥ 2 =PSIE(.S, M) 16,8
g +=PSIE(.5,M 1,16
é x = PSIEL.5, M2, 16
o =PSIE(.5,MU) 4,16
B v=PSIEL(.5,MU18,16
& w=PSIEL.S, MUY 16, 16

5.0

Figure 2.20. Angular flux error traverses ‘pE('S’“) for DB1, DB3 and DGF
methods for eight selected discretizations of Benchmark #3
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BENCHMARK 3.1 ERROR TRAVERSE PSIE(1,MU) FOR I-16 OR M-ib

-

LEGEND ]
o0-PSIEL], MU 16,2 "
o=-PSIEL],NUIIG, 4 p

s~PSIE(1,MUIIG, 8
+=PSIE(1, M2, 16

x = PSIE(1,MU) 4. 16 o
o-gg}gu,num,ls
v- (1,nnie, 16 -
. (a) DB1 ! : =
(78]
o
o P17 —_ T Wt 5o
40 ~0-8 -0:6 ~0-4 0-6 o0-8 1o

&
[N
=)

b3 02 0

BENCHMARK 3.2 ERROR TRHVER%E PSIE(1,MU) FOR I-16 OR M-16

z
e o e ¥
40 -08 -0'6 “0-4 02 =

LEGEND
o-PSIE(],MU) 16,2
o-PSIE L) 16,
5-PSIELI, NI 16,8
(b) DB3 +-PSIE(1 M2, 16
x=PSIE(], M) 4, 16
o ~PSIE(1.MUIB, 16
v - PSIE(1,N0) 16, 16

PSIE

-p:35-0-30 0:25 -0:20 -0:15 -0-10 -0-

i I

BENCHMARK 3.4 ERROR TRAVERSE PSIE(1,MU) FOR 1=16 OR M-16

LEGEND
o-PSIE(], MUI 16,2
o~PSIE(],MU) 16,4
& -PSIELL, MUIIG, 8
+=PSIE(L, M2, 16
x~PSIELL, M4, 16
o~ PSIE(L, NUIB, 16
v =PLIEWL HNIG, 15

(¢c) DGF

Figure 2.21. Angular flux error traverses Q;E(l,u). for DBl, DB3 and DGF
methods for eight selected discretizations of Benchmark #3
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BENCHMARK 3.1 ERROR TRAVERSE PSIE(1.5,MU) FOR I-16 OR M-16
-

o-PSIE(1.5,MU)16,2
0=PSIE(1.5,MU) 16,4
a=-PSIE(1.5,MU116,8
+=PSIE(1.5,MU11,16
x=PSIE(1.5,MU12,16
e=PSIE(1.5,MU)4,16
v~PSIE(1.5,MU)8, 16
s =PSIE(1.5,HU) 16,16

(a) DBl

?

-
L]

BENCHMARK 3.2 ERROR TRAVERSE PSIE(1.5,MU) FOR I-16 OR M-16

feir

o~-PSIE(1:5,MU)16,2
o=PSIE(1.5,MU116,4
& =-PSIE(1.5,MU1)16,8
+=pPSIE(}.S,MUL,16
x=PSIE(1.5,MU) 2, 16
o =PSIE(1.5,1U)4,18
v -PSIE(1.5,HU)8, 16
w=pPSIE(1.S5,HUI 16,16

01

03

(b) DB3

" PSIE

=03

04

v '
40 08 06 04 02 0-0 o-2 o-4 o6 o-8 10

o~ PSIE(L.S, M 16,2 )
o-PSIE(1.5,M1116,4 &
&=PSIE(1.5,MU)16,83

+=PSIE(1.5,M)1,16 "
x=PSIE(1.5, M0 2, 16 e

o =PSIE(1.5,MU)4, 16
v~ PSIE(1.5,MU)8, 16
® - PSIEL1.5,HU) 16,6

(c) DGF

Figure 2.22. Angular flux error traverses IPE(1-5s11) for DB1, DB3 and DGF
methods for eight selected discretizations of Benchmark #3



Table 2.9.

BEAPAC 05,76 BP#3.1 DB1 1 CELL N.A. X(O,.5)
AVG. ABS. SCALAR PLUX ERR0OR (GLOBAL)
I: ¥O. OP XMESH INTERVALS J: HO.

J. 2 “
1.
ERROR 1 . 3.220-02  6.26D-02
ERPOR 2 . 3.85D-02  2.99D-02
BRROR 8 . 5.33p-02  1.83D-02
ERROR 8 . 6.05D-02  1.42D-02
PRROR 16 . ©6.37D-02  .1.38D-02

BEAPAC 05/76 BP#3.2
AVG. BBS. SCALAR PLUX ERROR (GLOBAL)
I: NO. OF XMESH INTERVALS J: Wo.

3. 2 4

T .
ERROR 1 . 3.24D-02  1.00D-02
ERROR 2 . 4.438D-02 1.22p-02
ERROR & . S.51D-02  1.32D-02
BRROR B8 . 6.09D-02  1.32D-02
ERROR 16 . 6.38D-02  1.36D-02
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Average absolute scalar flux error for DB1, DB3 and DGF
methods for twenty discretization sets of Benchmark #3

BEAPAC 05/76

AVG.

I: NO.. OF YMESH INTERVALS

ERROR
ERROR
ERROR
ERROR

ERROR

J
I

& ~N

16

e % s 8 o % & s 4 8 4 o 8

8

S=1, X(.5,1.5) S$=0,

OF MU POIBTS

16

L R R I R R R I N I I I R R R I N A I I I Ay I

6.08D-02
2.89p-02
9.08p-03

. 4.06D-03

2.56D-03

6.18D-02
2.78D-02
1.17D-02
3.28p-03

8.74D-08

DB3 1 CELL B.A. X(0,.5) S=1, X(.5,1.5) s=0,

8

OF MU POINTS

16

R R I I R N I R I TR R R

BP#3.4

2

2.30p-02
6.57D-03
1.17D0-03
2.06Dp-03
2.03p-03

2.220-02
1.08D-02
3.86D-03
1.22p-03

7.45D-04

Hg0=1.05

¥00=1.05

DGP 2 CELL M.A. X(0,.5) S=1, X(.5,1.5) S$=0, NUO=1.0S5

4

ABS. SCALAR FPLUX ERROR (GLOBAL)

J: MO,

OF MU POINTS

16

LR R R R R R R R R R I T I I Y S AP AP P,

5.08D-02
4.28D-02
5.43Dp-02
6.07D-02
6.370-02

2.21Dp-02
1.700-02
1.430-02
1.32p-02
1.36D0-02

2.47p-02"

1.280-02
4.410-03
2.64D-03

2.150-03

2.56D-02
1.350-02
4.63D-03
1.480-03

6.80D-04
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Table 2.10. Relative sum error of pointwise scalar flux for
DB1, DB3 and DGF methods for twenty discretization sets
of Benchmark #3

BERAPAC 05/76 BP#3.1 DBt 1 CELL M.A. X(0,.5) S=1, X(.5,1.5) sS=0, NU0=1.05

REL. ABS. SCALAR PLUX ERROR (GLOBAL)

I: WO. OF XMESH INTERVALS J: NO. OF MU POINTS

J . 2 4 8 16

I .
ERROR 1 7.41D-02 1.44D-01 1.400-01 1.42Dp-01
ERROR 2

9.890-02 7.68D-02 7.430-02 7.14D-02

ERROR 4 1.47D-01 5.04D-02 2.50p-02 3.21p-02
ERROR 8 1.730-01 4.05D-02 1.16D-02 9.390-03
ERROR 16 1.86D-01 4.04p-02 7.46D-03 2.55D-03
BEAPARC 05/76 BP#3.2 DB3 1 CELL M.A. X(0,.5) S=1, %(.5,1.5) $=0, KU00=1.05

BEL. ABS. SCALAR FLUX ERROR (GLOBAL)

YI: NO. CP XIMESH INTERVALS J: NO. OF MU POINTS
3. 2 4 8 16
T .
ERROE 1 . 7.46D-02  2.31D-02  5.29D-02  5.12D-02
BRROR 2 . 1.15D-01  3.12D-02  1.69D-02  2.77D-02
ERROR 4 . 1.520-01  3.63D-02  3.230-03  1.06D-02
BRROR 8 . 1.74D-01  3.790-02  5.900-03  3.50D-03
LBROR 16 . 1.86D-01  3.96D-02  5.93D-03  2.17D-03
BEARAC 05/76 BP#3.4 DGP 2 CELL M.X. X(0,.5) S=1, X(.5,1.5) S=0, N@0=1.05

REL. ABS. SCALAR PLUX ERROR (GLOBAL)

I: NO. OF XMBSH INTERVALS J: NO. OP M0 POINTS

3. 2 4 8 16

: S
ERROR 1 . 1.170-01  5.090-02  5.68D-02 - 5.90D-02
ERROR 2 . 1.100-01  4.37D-02  3.28D-02  3.48D-02
EREOR 4 . 1.50D-01  3.920-02  1,21D-02  1.27D-02
ERROR 8 . 1.74D-01  3.790-02  7.54D-03  4.24D-03
PRROR 16 . 1.86D-01  3.98D-02  6.290-03  1.98D-03
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2.2.4 Benchmark Problem #4, a two cell least squares modes analysis

The reference problem configuration for BP4 is given in section 2.2.3
and the reference solution wR(x,u) ig displayed in Fig. 2.9. 1In this
problem we generate a benchmark solution wB(x,u) in two cells as described
in section 1.1.6. Figure 2.23 illustrates wB(x,u) for x traverses and u
traverses in the usual fashion. At the interface x = .5 there 1s a flux

discontinuity for u = 0 due to the source in cell I.

Comparisons of scalar flux ¢R(x) and ¢B(x), and angular flux wR(x,u)
and wB(x,u) are illustrated in Fig. 2.24a,b respectively. The maximum
relative scalar flux differences are about 4% in cell I. The angular
flux differences in cell I are about .15 (arbitrary units) at the inter-
face x = .5 for 1 < 0 (in particular near u = -.9). The difficulty in
approximating the angular flux in cell I is not evident, but may be

related to the reflecting boundary condition at x = 0.

The benchmark solution wB(x,u) in cell II is obtained exactly as in
BP3 but is then modified by a regionwise constant angular source Q(u)
which is required to satisfy the interface condition of flux continuity.
Figure (2.25b) illustrates the constant source SI = .5 in cell I and the
interface condition source Q(u) in cell II. The angular flux difference

of wB(.S,u) and WR(.S,u) in cell I is the dominant factor in the shape
of Q(u) in cell II.

Again we recall our original purpose in this work is to create exact
benchmark problems which can be related to physical problems. We claim
BP4 is such a problem and as such can be used to analyze the error per-

formance of numerical methods with particular interest in observing the
error at the interface x = .5.

First we examine wB(x,u) in more detail. Figure 2.25a illustrates
the transient combining coefficients A(vn) and asymptotic coefficients

ayt for cells I and II. 1In cell II the A(V) are precisely the same as in

BP3. The coefficients a in cell I can be better understood by analyzing

Fig. 2.26a which displays the contribution of the anqn to wB(x,u) at the
cell boundary x = 0. The negative contributions of the a_q are added to
n'n

the particular solution corresponding to the source in each cell.

Sixteen different space/angle mesh discretizations for BP4 were
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BENCHMARK 4 ANG FLUX PSIB(X,MU) MU-+-(1,.5,.1,0)

S

04

(a)

PSIB

0.2

00

T T T T T T T —y 4
po0 04 02 03 04 O0S O06& ©07 08 09 10 }-i 1-2 1-3 14 1}s

-0-2

GEND
o-PSIBI(X,1)
o=PSIB(X,.S]
4-PSIB(X,.1)
+ = PSIB(X,+0)
x = PSIB(X,~0)
o =PSIBI(X,-.1)
v =PSIB(X,-.5)
@ - PSIBIX,-1)

.BENCHMARK 4 ANG FLUX PSIQ[X,HU) X-0,.25,.5,.6,1.,1.5

(b)

v T v v
4.0 -0-8 ~0-6 -0 oo 0-2 [T 06 08 ijo

LEGEND
o~ PSIB(0,MU)
0-PSIB(.25,MU}
4 =-PSIBL(.S,MU)
+-PSIB(.6,1U)
x=PSIB(]., M)
¢ =-PSIB(§.5,M0)

Figure 2.23. Angular flux traverses for Benchmark #4
(a) Traverse along x for fixed u
(b) Traverse along p for fixed x
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BENCHMARK 4 SCALAR FLUX PHIR(X) VS. PHIBI(X)

[s0]
(a) T
a
o
S T T L 1] T T A L] T L T 1 T T
g-0 0O-1 0-2 0-3 D-4 0-s 06 0.7 0-8 0-9 1-0 11 1-2 1-3 1-4 1-€
X
LEGEND
0 = PHIR(X)
o~ PHIB(X)
BENCHMARK 4 PSIR(X,MU) VS. PSIB(X,MU
(b)

LEsonD
0 ~ PSIR(0, ML)
o - PSIR(.S, MU)
& -PSIR(1.5, KU
+ = PSIB(0, ML)
x = PSIB(. S, 1)
o - PSIB{1.5, HU)

Figure 2.24. Comparison of DB3 reference and benchmark solutions

_for Benchmark #4
a. Scalar flux ¢,(x) vs. ¢B(X)
b. Angular flux ¥ (x,}) vs. Vy(x,u) at x=0, x=.5 and x=1.
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BENCHMARK 4 A(NU) FOR CELLS I £ IT FOR N-=3,ALPHA-.18

[=]

-
&

LEGEND
NUO- 1-0500 o -A(NU) CELL I A0+--0-2634 AO0---0-4142
NUC- 1-05S00 4-A(NU) CELL II AQ+= 0-2556 A0---0-0093

BENCHMARK 4 REGIONWISE CONSTANT SOURCES SRCAMW) I X Il

03

(b)

-0 -0-8 -0-6 4 -0:2 o] 0-2 0-4 0-6 0-8 1}0

= SRCA(MU) I
- SRCaU) It

0D

Figure 2.25. (a) Combining coefficients A(v) and ao_ from least
squares modes analysis

(b) Regionwise constant sources in Cell I and Cell II
for Benchmark #4
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EIGENMODES A(N)=Q(X, MU, N) TRAVERSE AT X-0.

o-0(0,HU, 0]

. 0=-01(0,hU,+0}

s -010,HU, 1)
+ =010, MU, 2)

% - 010, MU, 0-)
o =00, MU, -0)
v -0(0,HU,-1)
®-0(0,HU,-2)
x - PSIBIO, MU}

)

BENCHMARK 4 EIGENMODES A(N)xQ(X,MU,N] TRAVERSE AT X=.5

xXa4906x+»00
LI D D B B N B I |
e -

. e

JODDOQOQO

BENCHMARK 4

EIGENMODES A(N) =0 (X, MU,N)

TRAVERSE AT X-1.5

Figure 2.26.

Contributions of elementary solutions a nd (x,p) to

113(x,u) in Benchmark #4 for u traverse at (a) x=0,
(b) x=.5, (c) x=1.5
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solved. The spatial mesh discretization is equally spaced in the two
cells. The angular discretization is the same as in the previous prob-
lems. The absolute maximum scalar flux error ”QEHW with associated sign
is tabulated in Table 2.11 for the three methods of the previous sections.
For equivalent mesh discretizations, omitting the cases when I = 3, the
DBl and DGF methods have comparable accuracy. For I = 3 or 6 and J = 8
or 16 the maximum error in DBl and DGF is about three or four times the
error of DB3., Figure 2.27 illustrates this clearly for seven selected
discretizations. Also apparent is a significant error fluctuation about

the interface at x = .5 for low angular approximations.

The optimum space/angle mesh ratio phenomenon is particularly notice-
able for DBl and DGF where the combination (I,M) = (3,16) has an error
comparable to (I,M) = (24,4). As the mesh is refined for M = 16 the error
magnitude oscillates about zero with the location of the maximum error

approaching the interface x = .5.

The maximum absolute angular flux error "¢E“w with associated alge-
braic sign is tabulated in Table 2.12. The maximum error is located at
the u coordinates with smallest absolute value for all methods., For DBl
it is always located in cell I. For DGF it is located at the cell inter-
face x = .5 for all but two problems (J = 4)., For DB3 it is usually in

cell I with two exceptions when J = 8.

Figures 2,28, 2.29 and 2.30 illustrate the angular flux error for
traverses along x = 0, .5, 1.5. For low order spatial discretizations
the error magnitude is largest in the neighborhood of u# = 0, At x =0
the error (Fig. 2.28) is symmetric for all three methods due to the re-
flecting boundary condition. At the interface x = .5, the error is
largest near u1 = 0 for p > 0. In the DGF method the error is antisymmetric
about y = 0. At x = 1.5 the error shape is similar to the shape at x = .5,

except the antisymmetric behavior is absent from DGF.

The average absolute scalar flux error and the relative sum error of
the scalar flux is tabulated in Tables 2.13 and 2.14. A comparison of the
errors for the three methods for low order spatial discretizations
(Table 2.13) reveals that the methods (DBl, DB3 and DBGF) are ranked in or-
der of decreasing error magnitude. As the number of space mesh intervals
increases, the average error magnitudes for the three methods for equi-

valent mesh discretizations become less distinct.
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Table 2.11. Maximum absolute signed scalar flux error i"i}é”°° tabulated
' o

for sixteen space/angle discretization sets Benchmark #4

for DB1, DB3 and DGF methods

BEAPAC 05/76

BPEU,1 DBY 2 CELL m.A. X(0,.5) Se1, X(.5,1.5) S=0, NUO-1.05

NAX. ABS. SCALAR FLUX FERROR AND LOCATION (GLOBAL)
X: NO. OP XNESH INTERVALS J: RO. OP MU I'OINTS
. 2 4 8 16
S
ERROR 3 . 7.60D-02 -1.63p-01 ~-1.60D-01 =1.470-01
EXACT L3 1.113 1,113 1,113
X Loc . 0.0 0.0 0.0 0.0
ERKOR € . 1.15D-01 -7.67p-02 =5.24D-02 -4.93D-02
EXACT . 1.064 1,112 1.064 1,064
(a) DBl 1 Loc . 0.250 0.0 0.250 0.250
ERFOR 12 . 1.200-01 =-6.37p-02 -2.85p-02  1.97p-02
EXACT . 1.06u 0.602 0.976 0.602
Y Loc . 0.250 0,625 0.375 0.625
ERROR 20 . 1.21D-01 =7.05D-02 -1.510-02  1.13p-02
PXACT . 1,068 0. 674 0.976 0.678
¥ Loc . o250 0.563 0.375 0.563
BEARAC 05/76 BP#U.2 DB3 2 CELL K.A. I(0,.5} S=1, %(.5,1.5) $=0, ¥00=1.05
BAX. ABS. SCALAR PLUX ERROR AND LOCATION (GLODAL)
I: WO. OF YNESH JINTERVALS J: NO. OF MU POINTS
3. 2 “ 8 15
1.
FRROR 3 . 1.08D=01 =-5.19D-02  2.72D-02  4.96D-02
FXACT R IRTT) 1113 1113 1,113
X 10c . ol 0.0 0.0 0.0
EPROR 6 . 1.720-01  -5,73D-02 -1.250-02  1.610-02
EXACT R TY! 1.113 0. 496 1. 060
(b) DB3 X Loc . 0.250 0.0 0.750 0.250
ERROR 12 . 1.220-01 | -6.51D-02  =1.23p-02  7.500-03
EXrCT . 1,064 0.¢02 0.976 0.976
X Loc . 0.250 0.625 0.375 0.315
EREOR 26 . 1.220-01 | -7.06p-02 -1.270-02  3.59-03
EXACT . 1,064 0.674 0.976 0.3e6
X L0¢ . 0.250 0.563 0.375 0.938
BEATAC 05,76 BPAU.4 DGP 2 CELL M.A. X(0,.5) S31, X(.5,1.t] $-0, HU0=1.0S
MAX. ABS. SCALAR PLUX ERROR AMND LOCATION {GLOBAL)
T: RO. OF X.ESH INTERVALS J: NO., OF nU POLNTS
J . 2 L} [} 16
ERROR 3 . 1.350-01  5.390-02  B8.A30-02  1.03n-0%
EXACT MR B 0.358 0.358 0.350
X Loc . 0.0 1.000 1.000 1,000
ERROR 6 . 1.000-G:  <-9.220-02  -5.330-02 =3.960-02
EXACT . .13 1.064 1.064 1.008
(c) DGF ¥ ).0C . 0.0 0,250 0.250 €.2%0
FREOR 12 . 0.270=01  =6.000-02  -3.1u4p-02  1.940-02
Fact - 1.06u 1.107 0.976 01602
1 10¢ . 0,250 0. 125 0.375 0.625
ERROR 20 . 4.220-0% | -6.7¢0-02 =1.690-02  1..30-02
BLneT . 1004 0,07 0.907 0,678
I L0¢ v 0250 0.50) [T 0.5063
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‘BENQX!HHRK 4.1 SCALAR FLUX ERROR PHIE(X) FOR I-24 OR M-16
s

o-PHIE(X) 24,2
o ~PHIE(X) 24,4

e a=PHIE(X) 24,8
& +=PHIEIX) 3,16
x=PHIE(X) 6,16
e =PHIE(X) 12,16
g_ ¢ =PHIE(X)
. 8]
(a) DBl =¥y
- £ o s

-0-03

015 010

_ .BENClPMﬂRK 4.2 SCALAR FLUX ERROR PHIE(X) FOR I1-24 OR M~16
-8

o-PHIE(X) 24,2
o-PHIE(X) 24,4 -
a=-PHIE(X) 24,8

+=PHIEX) 3,16
x~PHIE(X) 6,16
o -PHIE(X) 12,16
 9=PHIE(X) 24,16

0-10

008

(b) DB3

PHIE

rd

3 H

é !
A
b Ay
3 h b
4 "

q
4

=010

BENC.J"MHRK 4.4 SCALAR FLUX ERROR PHIE(X) FOR I-24 OR M-16
é

o-PHIE(X) 24,2
i o-PHIE(X) 24,4

y B &= PHIE(X)
el 4= PHIE(X)
Y % = PHIE(X)

Figure 2.27. Scalar flux error ¢_(x) for DB1, DB3 and DGF methods
’ for seven selected Eiscretizations of Benchmark #4° ~
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Table 2.12. Maximum absolute signed angular flux error +"QE|

for twenty space/angle discretization sets of
Benchmark #4 for DB1l, DB3 and DGF methods

BEARAC 03/76 BPOA.1 DBY 3 CRLL 8.3, X(0,.%) 3=1, I(.5,1.5) S0, §O00=1.03

PAX. ABS. VECTOR FLOUX ERROR 4BD LOCATIOF (GLOSAL)

I §O. OF InESE INTEATALS  Ji NO. OF W0 POISTS

3. 2 s ¢ “
T .

cenesenennnteetannan aneranoseste e aaanraaennnnannaas

wor 3 . 1.470-02 =-1.150-01 -3.330-01 -&.990-01
aacr . 0.156 0,666 0.780 0.786

3 toc . 1.500 0.0 0.0 6.0
aoLoc . a.s00 0211 -0.069 -0.020
.

ZAROR 6 . 32.130-02 =-3.710-02 ~-1.710-01 =3.940-01
EEACT . alen 0. 558 0. 788 0.770
X L0C . 0.%00 0.250 0.250 0.2%0
soLoc . 0.s00 -0.211 -0.069 -0.020

S1M0E 12 . 2.800-02 ~1.820-02 <-6.090-02 =2.720-01
BIACT L o.ese 0,655 0,680 0 1e8
T Loc T 0.128 0.378 0.375
sstoc . 0.%00 -0.211 -0.069 -0.0%0

BsOR 26 . 2.300-02 ~-1.320-02 =1.600-02  ~1.370-01
macr T oolees 0,719 0,008 0.702
x 10¢ . 0.3 0,128 0,830 0.438
mLoc . 0.500 0.21 -0.069 -0 020

sIaAnC 05/76

BPeS.2 081 2 CELL R.A. X(0,.%5) S=1, I{.5,1.5) $=0, 5U0~1.0%

SAX. A8S. VECTOR FLOZ RRROZ AND LOCATION (GLOBAL)

I §O. Oi INESE INTRAVALS

J: BO. OF HO POIRTS

3. 2 s ’ *

T .

et taraccetnaantaaeenaatotonensionennnsnsenennnnnan

FIROR 3 . 2.48D-02 -1.680-02  9.970-02  3.ac0-01
Bxace L olem 0178 0.74s 0.770
1 toc . 0.500 1.000 0.0 0.0
eszoc . 0.500 0,211 0.069 0.020
EBROD 6 . 2.470-02 -1.480-02 ~2.3e0-02  2.070-0%
sncr T ouem 0. 108 0,152 0.770
% toc . 0.500 0. 500 0.750 0.250
woLoC . 0.300 -0.211 0.069 -0.020
ERROR 12 . 2.49D-02 =1.49D-02 ~.860-03  7.978-02
mcr . 0.6sw 0. 108 0,257 0.1ee
T loc . 0.378 0.500 0,625 a8
suzoc 2 o.s00 -0.211 0.069 -0.020
BEROR 28 . 2.520-02  -1.890-02 -3.130-03  1.650-02
micr T 0.108 0.763 0.702
T 1oc . o.e38 0.300 0,373 0.3
sozoc - 0.500 -0, 211 0.069 ~0.020

BRARAC 03/7¢

GAX. 48S. VECTOR PLOI K208 AUD LOCATIOB {SLomy)

Is 80, OF XARSN IPTERVALS

Jt
L]

8P68.8 OGP 2 CELL §.4. X(0,.5) $=1, 3{.5,1.3) 3=0, 300=1.0%

0. OP &0 poINTS

1¢

LA R R R TR T T T R RN

3. *a2
 J
0808 3 . 6.700-02
t1aCt « 0.87¢
1 10C . 0.500
ssL0C . 0.500
B0N08 6 . 2.880-02
BIACT « 0.67
3 toc . 0.500
astoc « 0.300
.
meor 12, 2.500-02
sxACT . 0,67
3 toc . 0.%00
soLOC . 0.%00
22R08 2%, 2.310-03
BIACT « Q.85
1 10¢ . 0.378
notoc . 0,800

=1.350-01
0.104
0.300

-0.2N1

=5.790~02
0.786
0.2%0
e.2n

-2.670-02

0.71%
0.123
0. 21¢

«1.790-02
0. 108
0.300

-0.211

~2.000-01
0. 180

=1, 54D~G"
0.8
0.500

~0.069

=0.20-02
8,180
0.%00

«0.069

=J.1%0-02
Q0. 180
0.300
«0.069

2.520-01
0.7
0.%500
0.020

-2.280-01
0.17)
0.500

-0.020

=1.910-01
0.173
0.500

-0.020

=1.308-01
0.173
0.300

~0.020
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BENCHMARK 4.1 ERROR TRAVERSES PSIE(O,MU) FOR I-24 OR M-16

(a) DBl

0-PSIE(O, M) 24,2
0-PSIE(O,HU) 24,4
+-PSIE(O,MU) 24,8
+=-pSIE(O, M) 3,16
x=PSIE(O, M) 6,16
o -PSIE(O,MU) 12,16
v = PSIE(O, U124, 16

o-PSIE(0,M) 24,2
o-PSIE(O, ML) 24,4
a-PSIE(O,MU) 24,8
+=PSIE(0,M0) 3,16
pEg &l
- ) 1

(b) DB3 v - PSIE(O, MU 24, 16

i

010 0-1S

f
1
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BENCHMARK 4.4 ERROR TRAVERSES PSIE(O,MU) FOR I-24 OR M-16

-
(=1
o

c D

() GF o-PSIELD, 1) 24,2
o=PSIE(O, ML) 24,4
& ~-PSIE(0,HU) 24,8
+-PSIE(O,MD) 3,16
x=PSIE(O,MU) 6,16
o =PSIELD,HU) 12,16
v =PSIE(D,NU) 24, 16

Figure 2,28, Angular flux error traverses ) (0,n) for DB1l, DB3 and DGF
methods for seven selected discretlzations of Benchmark #4
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BENCHMARK 4.1 ERROR TRAVERSES PSIE(.S5,MU) FOR I-24 OR M-16

g

o-PSIE(.S,MU24,2
o~-PSIE(.S,MU)24, 4
a-PSIE(.S,1U124,8
+=-PSIE(.5,1U)3,16
x=-PSIEL.5,MU)6, 16
o-PSIE(.S,M12,1
v=-PSIE(.S,MU) 24,1

0-3
I

(a) DBl

PSIE

Tl

-
Lo
)

BENCHMARK 4.2 ERROR TRAVERSES PSIE(.S,MU) FOR I-24 OR M-16

0 -PSIEL.S, MU 24,2 °]
0-PSIE( S NI 24, 4

a-PSIE(.S,MU) 24,8 |
+=-PSIE(.5,MU) 3,16 -]
x=PSIE(.S,MU)6, 16
e=-PSIE(.S,M1 12,1 °
- -
(b) DB3 PSIE(.S,NU) 24,1 Eé.
a.
8
&

I —xéggg - g
40 -0——0-6 Gt =93 e o ot o o8 o
Y

-

BENCHMARK 4.4 ERROR TRAVERSES PSIE(.5,MU) FOR 1-24 OR M-16
-

e-PSIE(.S,MU)2¢,2
0-PSIE(.S,MUI24, 4
4-PSIEL.S,NMN24,8
+=PSIE(.S,MU)3, 16
x~PSIE(.S,MU)6,16
®=PSIEL.S,MU)12,1
*~PSIEL.S,MU) 24,1

0-2

(c) DGF

02 0-4 o6 ds o

Fi
gure 2,29, Angular flux error traverses wE(.S,u) for DB1, DB3 and DGF

methods for seven selected discretizations of Benchmark #4



(a) DBl
(b) DB3
(¢) DGF

Figure 2.30.

BENCHMARK 4.1
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ERROR TRAVERSE PSIE(!. S,MU) FOR I-24 OR M-16

a~PSIE(1.5,MU124,2
o-PSIE(]. S Hu124,4
a=PSIE(L. S HU1 24,8
+=PSIE(l. S H 3,16
x~PSIE(L. 5 MU)G, 16
o~ PSIE(L. 5 f‘lU)lZ 16
v=PSIE(L. 5 MUl 24, 6

~0-02

PSIE

-$-10 -0-00 -0-08 -0-0¢

BENCHMARK 4.2 ERROR TRAVERSE PSIE(1.5,MU) FOR I-24 OR M-16

o~PSIEL1.5,M0124,2
o-PSIELL. S MUl 24,4
s =-PSIE(L. 5 hUla‘l.S
+=-PSIELL. 5 MU 3, 16
. x=PSIEW1. S MU)E, 16
o ~PSIE(L. S ﬂU)lZAG
v-PSIE(l. S HUI24,16

Qe

PSIE

P12 0-10 -0-08 -0:06 -~0-04

<44

BENCHMARK 4.4 ERROR TRAVERSE, PSIE(1.5,MU)

FOR I-24 OR M=16

s

g/

°
por—en—a—0p _/;,_ 1 s ¥
4.0 -G-8 o'.g . o-8

PSIE

L 1

- 039020 -0- 015 ~0-010 0

o) ¥ T
06 -0-¢ -o\a\—;m\Lo.;
) -

o-PSIE(1.5,M124,2
o=-PSIE(1.5,MU)24,4
a=-PSIE(1.5,HU)24.8
+-PSIE(1.5,MU13,16
x - PSIE(1.5,M0)6, 16
o-PSlEu.S,nUHZ.lB
v =-pPSIE(1.5,HU124,16

Angular flux error traverses wE(l .5,u) for DBl, DB3 and DGF

methods for seven selected discretizations of Benchmark #4
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Table 2.13. Average absolute scalar flux error for DB1l, DB3 and
DGF methods for sixteen discretization sets of
Benchmark #4

BEAPAC 05/76 BP#4.1 DBY 2 CELL M.A. X(0,.5) S=1, X{(.5,1.5) S=0, NUO0=1.05

AVG. ABS. SCALAK FLUX ERROR (GLOBAL)

T: NO. OF XMESH IRTERVALS J: NO. OF MU POINTS
(a) DB1 J . 2 4 8 16
1.
ERROR 3 . 4.150-02  6.68D-02  5.49p-02  5.30D-02
ERROR 6 . 6.15p-02  5.14D-02  1.75D-02  1.73D-02
BRROR 12 . 5.26D-02  4.880-02  1.12D-02  6.26D-03
ERROR 24 . 5.180-02  4.82D-02  1.04D-02  2.60D-03
BEAPAC 05/76 BP#u.2 DB3 2 CELL M.A. X(0,.5) s=1, Xx(.5,1.5) S=0, Ng0=1.05

AVG. ABS. SCALAR PLUX ERROR (GLOBAL)

T: RO. OF XMESH INTERVALS d: NO, OF M0 POINTS
(b) DB3 IJ . 2 4 8 16
ERROR 3 . 5.11-02 4.69D-02 1.78D-02 1.990-02
ERROR 6 . 5.24p-02 4.81D-02 9.92p-03 6.28D-03
ERROR 12 . 5.30D-02 4.81D-02 1.02p-02 3.510-03
ERROR 24 . 5.19D-02 4.800-02 1.03p-02 3.35p-03
BEAPAC 05/76 BP#4.4 DGF 2 CELL M.A. X(0,.5) s=1, Xx(.5,1.5) §=0, NOO=1.05

AVG. ABS. SCALAR PLUX ERROR (GLOBAL)

I: NO. OF XMESH INTERVALS J: NO. OP MO POINTS

(C) DGF IJ . 2 q 8 16
ERROR 3 . 8.67D-02 4.39Dp-02 2.71p-02 3.14p-02
ERROR 6 . 4.96D-02 4.94p-02 1.820-02 1.500-02
ERROR 12 . 5,200-02 4.84D-02 1.190-02 6.69D-03
ERROR 24 ., 5,.17Dp-02 4.810-02 1.03p-02 3.830-03
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Table 2.14. Relative sum error of pointwise scalar flux errors
for DB1, DB3 and DGF methods for sixteen discreti-
zation sets of Benchmark #4

BEAPAC 05/76 BP#6.1 DB1 2 CELL M.A. X(0,.5) S=1, X(.5,1.5) S=0, NU0O=1.05

REL. ABS. SCALAR FLUX LRROR (GLOBAL)

I: NO. OF XMESH INTERVALS J: NO. OF KU POINTS
J . 2 4 8 16
(a) DBl L
FRROR 3 . 6.77D-02  1.09p-01  8.95D-02  £,65D-02
ERROR 6 . 8.42D-02  6.40D-02  2.86D-02  2,83D-02
ERROR 12 . 8.63D-02  8.01D-02  1.84D-02  1.03D-02
ERROR 24 . 8.53D-02  7.93D-02  1.720-02  5.93D-03

BEAPAC 05/7¢6 BP#4.2 DB3 2 CELL M.A. X(0,.5) S=1, X(.5,1.5) S=0, NUC=1.05

REL. ABS. SCALAR FLUX ERROR (GLOBAL)

I: NO. OF XBESH INTERVALS J: NO., OF MU POINTS
J 2 4 8 6
(b) DB3 . !
ERROR 3 '8.330-02 7.65D-02 2.90p-02 3.24p-02

ERROR 6 B.7QD-0§ 7.87p-02 1.62p-02 1.03p-02
ERROR 12 8.70D-02 7.89p-02 1.6e8p-02 5.76D-03
ERROR 24 8.54D-02 7.900-02 1.690-02 5.51D-03
BEAPAC 05/76 BP#4.4 DGF 2 CELL H.A. X(0,.5) S=1, X(.5,1.5) 5=0, NU0=1.05

REL. ABS. SCALAR PLOX ERROR (GLOBAL)

I: NO. OF XMESH INTERVALS J: NO, OF MU POINTS

J : 2 4 8 16
ERROR 3 . 1.41D-01 7.16D-02 4.42p-02 5.12D-02
ERROR 6 : 8.12D-02 8.07D-02 2.98p-02 2.45p~02
ERROR 12 : 8.53D-02 7.9“0-02 1.950~02 1.10D0-02

ERROR 24 8.51D-02 7.91p-02 1.70p-02 6.30D-03
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2.2.5 Discussion

The examples above illustrate types of benchmark problems that can
be created for studying the error performance of various numerical
methods. More detailed error studies are necessary to completely char-
acterize the error behaviour for various classes of problems, 1i.e.
boundary conditions, cross sections and relative cell sizes in multicell
problems. An advantage of the automated approach taken here is that

such studies are performed with minimal effort by the analyst.

An interesting byproduct of this research is the least squares
modes analysis technique. For creation of one or two cell benchmark
problems we treat each cell independently and in two cell problems gen-

erate the source necessary to satisfy the interface condition exactly.

A simple variant of this procedure treats all cells simultaneously,
performing the least squares modes analysis for the entire system. The
boundary and interface conditions are satisfied in the least squares
sense. Several attractive features of this new numerical transport

method are:

(1) least squares nodes are required only on the problem

boundaries and cell interfaces.

(2) relatively few expansion functions and least squares nodes

should be required for obtaining accurate solutions.

(3) given the combining coefficients the corresponding angular
or scalar flux solution can be calculated at any point in

the problem domain.
(4) flux discontinuities at interfaces are easily represented.

As mentioned earlier, questions related to the choice of eigenmodes
and the placement of the least squares coefficients must be answered

before the procedure is generally applicable.

A matrix representation of the proposed method applied to the two
cell reference problem for BP4 is given by
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- + - - -
Q;(0)-Q (0) 0 a 1 [0
-5 (.5 (5 | | 2y I s,
(2.26) _ _ T o=
-Q; (.5) Q-5 S,
i 0 Q7 (1.5) | 0
where

*

(2.27) QG0 = [a,(0),0,(8) 0050,y ()]

[ q (x, %))
[qn(x)]i = qn(?’tuz) L>w 2 ... Mg 2 0.
0, (uty)) |
ar, g,  are the combining coefficients vectors of length 2N+2 for

the eigenmodes qn(x,u) in cells I and II, respectively. SI is the

constant source in cell I.

The solution is obtained by solving Eqn. (2.26) via the Householder
least squares method for overdetermined systems. The first row
(Q; - QE)aI = 0 in Eqn. (2.26) represents the reflecting boundary con-

0. The second and third row represents the interface

dition at x
condition at x = .5 and the last row corresponds to the vacuum condition

x = 1.5.
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III. THE SYMMETRIZED TRANSPORT EQUATION

3.1 The Equation and Elementary Solutions

An alternative approach to solving neutron transport problems is
realized by the symmetrized (canonical) transport equation [Vladirimov
1963]. The symmetrized operator is self-adjoint and positive definite

in the case ¢ < 1, where ¢ is the number of secondaries per collision.

The derivation of the symmetrized equation begins by writing the

standard equation (l1.1) for positive and negative u:

1
3.0 o BE L oGy - Mﬁj P(xu")du' = S(x,n)

2
-1
and
1
(3.0 -u BE o 60y (x,mw) - ﬂ%“lj bk, =" )dn" = S(x,mn)
-1
Adding and subtracting (3.1) and (3.2) gives respectively
5 - + 1 + +
(3.3) Hag b Gm) F o)y (x,0) - G(X)C(X)J ¥ o(x,u")du' = S (x,u)
0
and
st
G R L oy G = STw
where
(3.5) 2\P+(x,u) = p(x,u) + y(x,-u), ZS+(x,u) = S(x,u) + S(x,-u)
(3.6) 29 (x,1) = v(x,u) - ¥(x,-u), 25 (x,u) = S(x,u) - S(x,-u)

Solving (3.4) for w—(x,u) we find

+
- - M3y 1 _ s
(3.7) v (x,n) o(x) ox (x,u) + 0(%) S (x,n)
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Note, when S(x,u) is isotropic, S (x,u) = 0. Substituting (3.7) into
(3.3) for regionwise (cellwise) constant cross sections and isotropic

source yields the equation

2 2 + 1
(3.8) - AL G 46yt - c@em| v, udr = 5.
a(x) ax2

0

Boundary conditions usually considered for this operator are the
reflecting condition and the vacuum condition. The standard form of the

reflecting condition at the boundary x=b is

(3.9) Y(b,u) = ¥(b,-u) (0<u=<l
which is equivalent to

(3.10) Y (b,u) =0 .

By (3.7) in (3.10) we find for u > 0

+
(3.11a) U 3% (1) = § (x,u) . (reflecting)

ox
x=b

The standard form of the vacuum condition is

u >0 at b=0

(3.12) p(b,u) =0 L <0 at b=a

which is equivalent to
+ -
(3.13) Y (b,u) + ¢ (b,u) =0 .

Substituting (3.7) into (3.13) for p > 0 yields

+
(3.14a) w+(b,u) = i{gg;) 3 g:LE) - E%ES-S_(b,u)J (vacuum)

x=b



104

where the + sign 1s used 1f b=0, the - sign if b=a.

We apply the benchmark error analysis procedure to study methods
which solve equation (3.8) and its boundary conditions (3.11la) and (3.1l4a),
hence we need to obtain exact solutions to these equations. Given a
solution w (x,H) to the standard equation (1.1), we can obtain the

correspondlng solution wB(x,u) by using formulas (3.5) and (3.6).

The inhomogeneous boundary source terms required to make the boundary
conditions exact are generated from wB(x,u). Note that the source terms
arise when the exact solution does not exactly satisfy the hompgeneous
boundary conditions. For example, when a vacuum boundary condition is
specified in the standard equation, a non-zero inhomogeneous source term
effectively makes it an incident flux boundary condition. In the reflect-
ing boundary condition case, the inhomogeneous source term gives the
difference between the incident and emergent flux at the appropriate

boundary.

The canonical transport equation boundary conditions are more compli-
cated. The inhomogeneous source for the reflecting condition is derived

from eq. (3.6) and (3.10) and is defined by

(3.15) ECRDIE IR CRDRER M CRENY

%fr(b,u)

The general inhomogeneous reflecting boundary corresponding to eq. (3.1la)
is

+
(3.11b) u éy—gf*gl = S (b,u) - 2%21 fr(b,u) u>0.
x=b

The inhomogeneous source for the vacuum (i.e. incident flux) boundary

condition is derived from eq. (3.5) and (3.6) and is defined by

_ b=0 >0
(3.16) w+(b,u) + ¢ (b,n) = wB(b,u) =
b =a v<o
= fv(b,u)
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The general inhomogeneous vacuum boundary condition corresponding to

eq. (3.14a) becomes

(3.14b) (b, ) T —2 TR = g2 ST(b,u) + £ (b,y)
: ’ o(b) X x=b o(x) ’ y oM

For expedient application of the benchmark analysis we replace the

vacuum condition with the following simpler condition. We define

(3.17) (0, = B (b, + i (b,-n))

fe(b,u)

In Section 3.2.2 (below) we describe the application of a varia-
tional method to the canonical equation. Miller (1973) noted that
the reflecting boundary condition is a natural (or essential) boundary
condition of the functional minimization. Therefore to properly apply
the FEM method, we need to generate benchmark problems wB(x,u) (hence
w;(x,u)) which satisfy the reflecting boundary conditions (3.9) exactly.

The simplest approach is to generate a typical benchmark solution
wB(x,u) for a reflecting problem as previously outlined. Then to force

a homogeneous boundary condition we define the benehmark solution

(3.18) wg(x,u) = wB(x,u) - %[wB(O,u> = Vg (0,-1)]

R .
which satisfies a reflecting boundary condition at x = 0. wB(x,u) is

the solution to the new benchmark problem

(3.19) Lwi(x,u) = S(x,n) + Eégl [cho,-u)-wB(o,u)] = S(x,u) + Q(w)
where the right side is in general not symmetric in ﬁ, and

(3.20) Lyg(x,1) = S(x,u)
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is the symbolic description of the original benchmark problem. We can
generate the corresponding solution w;(x,u) and boundary conditions

R
using the solution wB(x,u).

Two cell problems are treated by th I rocedure described in Section
R
1.1.6. Here wél)(x,u) is replaced by wB (x,u). The source term QII(u)
in cell II is defined by

(1 r(D) 19
G a0 = o GF @ sST @) - ey @-0g @)
similar to Eq. (1.44).

The present implementation of the canonical transport equation
includes homogeneous reflecting condition at the left boundary and con-
dition (3.17) at the right boundary for the FEM method.

3.2 Numerical Methods

3.2.1 The discrete ordinates method with first order finite differences
in space

This method uses discrete ordinates approximation in angle and first
order finite differences to approximate spatial derivatives in eq. (3.8).

It will be referred to as the DFD method.

We solve (3.8) by the discrete ordinates method, hence we approxi-
mate the integral by numerical integration methods including single
Gauss quadrature. Then (3.8) becomes a system of discrete second order

differential equations with D = d/dx:

(3.22) [- = M 0% + oI-ocW] ¥T(0) = 8T (0 < x < a)
where ulu w:(x,ul) S+(x,u1)
2 +
. b o(x,u,) S (x,H,)
M= .. ’ W= ’ i+(x) = . 2 ’ _§+(X)= (}:t uz
4, .
by b (k1) S™ (x, 1)
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+
To approximate the solution ¥ (x) by means of finite differences,

we generate an equal spaced mesh structure

= (i-1)h i=1,2,...,I)

a
h=33
where the cell boundaries are xl and xI. The center of each mesh inter-
val (xi 3, 5 <x< x ) is at Xy except for the two boundary cells
(x; < x §_x3/2) and (xI_%.i X < xI)

Consider the differential equations (3.22) in the ith cell; the
integral of eq. (3.22) becomes

X .
i+s 2
(3.23) [ [-> M0 + 0 (1-ai) ]y (x)dx = J styax .
*1-% Ei-3

+ . .
Here, let y; = Qf(xi) and §I = §.(xi); then we make the approximation

X
its i3 N
(3.24) J Vdx 5 wl J stxyax S nst .
X% *1-%

In the term involving the second derivative there are three cases to

consider.
(bst - byt As

(3.25a) 1%/2 _yl Xy

1, 2+ 1.2 + + ._ _
(3.25b) -J E'MD ¥ (x)dx = - ;-M < D$i+% -D -y Axi, i=2,3,...,1I-1

Ax

i + + A

(3.25¢) LDQI - DEI—% X

A first order finite difference approximation yields

Yn "4

(3.26) Diw/ «h— i=1,2,...,I-1.

IIZ
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+
The boundary conditions (3.11b) and (3.14b) are applied to specify D_\b_l
+
and Dy, .
Substituting eqs. (3.24), (3.25) and (3.26) into (3.23) and
dividing by h (h/2 when i=1 or i=I) yields the linear system of equa-
tions for _lkI

+ + + ot
(3.27) By, , +Dy +EY =S (L = 1,2,...,I)
where
(0 1=1
(3.28a) B, = {B i=2,3,...,I-1),
B i=1
'Dl i=1
(3.28b) D, = 4D 1 =2,3,...,1-1),
\DI i=1I
(E i=1
(3.28¢c) E, = {B d=2,3,...,I-1),
\ i=1
ot _ ot
(3.28d) ENE 1 =2,3,...,I1-1),
(3.28e) D= M+ o(r-cw),
oh
(3.28f£) B = - -1—2M2.
ch

~ ~

B, Dl’ DI’ E, _S_l and _S_I are dependent on the boundary conditions and are
defined below.
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The reflecting boundary condition (3.11b) at x = X; yields

(3.29a) Dl =D
(3.29b) E = 2B
and
+_ <t 2.0 _1 .-
(3.29¢) S; =5 +¢MPef (x)) -8 (x)] .

The vacuum boundary (3.14b) at x = X7 yields

>

(3.30a) B = 2B
- 2
(3.30b) DI =D + B M
and
“+ + , 2 1 -
(3.30c) §{ =85 +% M[gv(xI) +5 8 (xI)]

The special boundary condition (3.17) at x = xq yields

(3.31a) EI =0
(3.31b) DI =1

and

(3.31c) 8; = ge(xl)

The matrix representation for the case of a reflecting boundary con-

dition at the origin and vacuum boundary condition at x = a is

D 2B T3] (5]
B D v 3,
(3.32) B D B %’3 = (851 .
B D B
. 2B BL.;gg :{J

Eq. (3.32) is a block tridiagonal system of order IMxIM with block
matrices of order MxM, The solution technique is block tridiagonal Gauss

elimination.
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3.2.2 Piecewise bilinear finite element method in phase space

This method uses piecewise bilinear polynomial functions in phase
space. It will be denoted as the FEM method. We outline the basic
method here; the reader is referred to [Miller, 1973] for a detailed

derivation.

Equations (3.8) and (3.14a) minimize the functional
+ 1, Ayt (x,u)y2 + 2 + 1,
(3.33) Fly (x,w)] = <;{u ™ )+ o (x,1)7 - ocy (x,u)J Y (x,u")du’
N 0
-t eow sTeom - 2 B ST

et oom, Vem-2E ouer,  E <<t ), £ (x>

vac refl
where

a 1
(3.34a) <f(x,u)> = J de du £(x,u)

and 0 0

1
(3.34b)  <<f(x,u)>> = J dunf (x,u)
9x
refl

xeaxrefl

vac
That is, finding the minimum point of equation (3.33) is equivalent

vac

to solving its Euler equations, (3.8) and (3.14a). Reflecting boundary
conditions are natural (essential) boundary conditions [Strang and Fix,
1973] of the minimization and are applied wherever the vacuum boundary

does not apply.

In order to solve for w+(x,u) in Eq. (3.33), the phase space domain
is divided into (I-1)+(M-1) connecting, but non-overlapping rectangular
subdomains or finite elements defined by (xi_i X < xi+1) and
(um < f-“m+1) for i-1,2,...,I-1 and m=1,2,...,M-1. The cross sections
are assumed pilecewise constant in space with discontinuities permitted
at interelement boundaries. The solution w+(x,u) is approximated by
plecewise bilinear polynomial trial functions ¢im(x,u) such that

I M

(3.35) ¢+(x,u) = 3 (xom) = NN FRC AR C D)
i=1 m=1



The‘¢im(x,u) are defined by
(
07 ()6 (1)
+
RIS
(3.36) ¢im(x,u) =< + (i=1,2,...
l(X) o, (W
CASGEN)
where
tiy7t £ <t<t
(3.37a) e:(t) =4{ 8ty 1= =1
0 otherwise
t-t
_ X i-1 ti 1St
(3.37b) 0 (t) = i-1 1
0 otherwise
Ati = ti+l—ti .
The ¢, are defined so that
im
¢ (xj,u ) = 13 o
where érs is the Kronecker delta.
I\A-'—
(3-38) =y (Xi,um)

Substituting (3.35) into (3.33) and minimizing F[$(x,u)] with

respect to variations in the

(1) (0)

(3.39) [-k*) + K

111

»I), (m=1,2,...,

If I($+) = minimum then

Ln yields the matrix equations

- gD K(vacz)]i - s

M)
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where

(3.40) q = - (2=1,2,...,M), (i=1,2,...,I)

The symmetric block tridiagonal streaming matrix is defined by

[ (D ey i
K1 K12 0
(1) gD gD
21 22 23
(3.41a) kD - . .
(1) (1) -(1)
K- 1,1-2 N-1,141 KI—l,I
(l) (1)
- 0 yI-1 I _J
where
(l) u (x) (x) (1 1,2,...,1), (m=1,2,...,M),
(3.41b) ij mk B ( ¢im ’ ¢ > =i-1,1i 1+1), (k—m—l m m+1)
and
LR
¢§$)(x,u) = T (x,1)
ij) is a tridiagonal matrix.
The symmetric block tridiagonal collision matrix is defined by
x(0) ()] 7]
1 K12 0
(0) (0) (0)
21 22 23
(3.42a) K(O) = . .
T (0) (0) (0)
K-1,1-2 Kx 1,1-1 ¥-1,1
(0 k(0
| © SR ST
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where
(0) (i=1,2,...,1I), (m=1,2 « M)
3.42b K., = < . D> L) »L) sbyeany
( ) ( ij )mk On¢1m’¢3k (j=i-1,i,i+1), (k=m-1,m,m+1)
n=min(i,j) .
Ki?) is a tridiagonal matrix.
The symmetric block tridiagonal scattering matrix is defined by
(gD (D o ]
11 12
gD D D
21 22 23
(3.43a) kD - .
g1 -1y (-1
Kl-2,1-1 ®ra1)1a1 ®rar
(-1) (-1)
|0 1,1 Ko
_where
(3.43b) ( (- 1)) <o 1d "¢, > (i=1,2,...,I), (m=1,2,...,
. 2alik) W T (§miol4,i41), (k=1.2.....
0 n=min(i,j).
Kigl) is a dense matrix.

The symmetric block diagonal vacuum boundary condition matrix is

defined so that

M)
M)

[ (vac) 0
K1

0

(3.44a) x{vae) -
0
(vac)
0 T
where
(vac)y _ it or A=

(3.44b) (K ) mk <<¢im’¢jk>>axvac (m=1,2,... M), (k=m-1 sm,mtl) .
g{vac) ; tridiagonal block matrix.

ij
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The source vector has the form

§,(x)
5,(x)
(3.45a) s = )
- + - -
5151
+ -
Si2 t Sio
(3.45b) §i(x) =
+ 2
—%M ﬂn_
(3.45¢) sIm = <¢im, S+(X,u)>
Had
- im -
(3.45d) Sim = o S (x,u)>

+ -
where S (x,Hv) and S (x,u) are assumed piecewise constant in space and

piecewise linear in angle.

As noted in section 3.1, special benchmark solutions wz(x,u) (eq.
3.18) are created which satisfy the reflecting boundary condition at
the origin x = Xy = 0. The vacuum condition at x = X, may be replaced
by eq. (3.17) which specifies the even parity flux w+(xI,u). The last
block of equations in (3.40), block I, is eliminated and the given
flux values w+(x1,u) are substituted into the equations for block I-1

with the resulting terms added to the source term.

The system of equations (3.40) are solved by Choleski decomposition

using a storage scheme which utilizes the symmetric band matrix property,
i.e., only the upper triangular half of the matrix is stored in a

rectangular array of dimension 2MxIM.
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3.3 An Example of the Benchmark Problem Error Analysis Procedure

A one cell benchmark problem is presented which illustrates a typical
application of the benchmark error analysis procedure to the DFD and FEM
methods of this chapter. The error performance for twenty space/angle

discretization sets is discussed.
3.3.1 Benchmark #5, a one cell least squares modes analysis

The reference problem configuration for BP5 is identical to the one
used in BP4 in section 2.2.3. The corresponding reference solution
wR(x,u) is displayed in Fig. 2.9. We generate a one cell benchmark solu-
tion wB(x,u) in the first cell of the reference problem subject to the
requirement that wB(O,u) satisfies exactly the homogeneous reflecting

boundary condition at x = 0 (i.e. wB(O,u) = wB(O,—u)) as in Eqn. (3.19).

The reference and benchmark problem scalar flux ¢R(x) and ¢B(x), and
the angular flux wR(x,u) and wB(x,u) are illustrated in Fig. 3.1. A
comparison with the corresponding solutions in cell I of Benchmark 4 in
Fig. 2.24 reveals that the most noticeable change in wB(x,u) occurs in
the neighborhood of u = .1 where the enforcement of the homogeneous boun-

dary condition in BP5 causes wB(O,u) to be symmetric about y = 0.

The least squares modes analysis in cell I results in combining
coefficients A(v) and a)t (Fig. 3.2a) which are identical to the coeffi-
cients for cell I in BP4 (Fig. 2.25). The sum of the fixed source (S=.5)
and Q(u), the source term required to satisfy the homogeneous reflecting

boundary condition at x = 0, are displayed for cell T in Fig. 3.2b.

+
Traverses of the even parity angular flux wB(x,u) corresponding to

¥, (x,u) are displayed in Fig. 3.3 for O < u <1 in cell I (note that

B

¢B(x,u) is symmetric about p = 0). The flux discontinuity observed in

Fig. 3.1b at u = 0 at the interface x .5 causes the even parity flux

to decay rapidly near the interface x = .5 as u approaches zero.

The even and odd parity source terms corresponding to the source in
Fig. 3.2b are displayed in Fig. 3.4. The odd parity source Sg(p) is due

to the source Q(p) introduced to satisfy the homogeneous reflecting

boundary condition at x = 0.
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BENCHMARK S SCALAR FLUX PHIR(X) VS. PHIBI(X)

o
o
[ ]
=% ]
2
(a) x
a
I
(4 ]
&1
[=)
6 ¥ L L i L] T T T L o
0-00 0-0s 0-10 0-1S 0-20 0-25 0-30 0-35 0-40 0-45 0-50
X
LEGEND
0 - PHIR(X)
o=PHIB(X)

BENCHMARK S ANG FLUX PSIR(X,MU) V3. PSIB(X,MU) FOR X-0,.5

(b)

10 08 06 0% 02 0-0 0-2 0-4 0-6 0-8 1-0
MU
LEGEND

o - PSIR(0, MU)
o - PSIR(.5, HU)
s - PSIB(0, AU)
+~PsIg(. 5, mu)

Figure 3.1. Comparison of DB3 reference solution and benchmark
solutions for Benchmark #5
a. Scalar flux ¢R(x) vs. ¢B(x).
b. Angular flux q;R(x,u) vs. an(x,u) at x = 0 and x = .5,
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BENCHMARK 5 A(NU) FOR _CELL I FOR N=3,ALPHA-. 18

(a)

-1-0 -0-8 -0-6 ~0-4 -0-2 0-0 0-2 0-4 0-6 0-8 1-0
NU

LEGEND
NUO- 1-0500 o=-fi(NU] CELL I AO0+--0-2634 AO-=--0-4142

BENCHMARK S SRCG{MUI FOR CELL 1

oD
(b) §°

0-2

-
[~

o
a.

-1-0 -0-8 -0-6 ~0-¢ ~0-2 0-0 0-2 0-4 D-6 B-8 1-0
MU

LEGEND
0 - SRCA(MW)

Figure 3.2. (a) Combining coefficients A(y) and agt from least
squares modes analysis.
(b) Regilonwise constant angular source in cell I
for Benchmark #5.
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BENCHMARK 5 EVEN PARITY FLUX PSIB+ (X, MU) MU-1,.5,.25,01,0

o}...—af AU I———— —

~
(=]

w
o

0-S
¢
q
q
o

¢

(a)

PS1B+
0-3 D-4
T

)

D

1.}

o-PSIB+(X,1)

2] o - PSIB+(X,.5)
s - PSIB+ (X, . 25)
. + - PSIB+(X;, .01
] x = PS1B+(X,0)
o
6 Ll ¥ Ll T ¥ 1 L] T T 1
0-00 0:0S 0-10 0-1S 0-20 0-25 0-30 0-35 0-40 0-45 0-S0
X

BENCHMARK 5 EVEN PARITY FLUX PSIB+(X,MU) X=0,.1,. 25, .45,.5

-+
a
() ¢
©
2
o - PS8+ (0, MU)
2 o - PSIB+(.1,MU)
& = PSIB+(.25,MU)
- + = PSIB+(. 45, M)
7. x = PSIB+ (.5, M)
o
6 T T T T 1 T + T Al
0-0 0-1 -2 0-3 0-4 0-S 0-6 0-7 0-8 0-9 1-0
MU

Figure 3.3. Even parity angular flux traverses for
Benchmark #5
(a) Traverse along X for fixed v
(b) Traverse along M for fixed X
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BENCHMARK S EVEN/0DD PARITY SOURCES SRCB+(MU) / SRCB-(MU)

QG—G—Q——G——B—B—-G—G——H——H—D—‘—G—B—G-—G—G—Q——B

-
6-
[
6-.
1
[+n]
5]
[«
(720, ]
6-
g_
OM
o - T " T - - -1 =B Q6 O e
0-0 0-1 02 0-3 D-4 0-S 0-6 0-7 0-8 0-9 1-0
MU
LEGEND
o - SRCB+ (MU}
o = SRCB- (MU}

Figure 3.4. Even and odd parity sources for Benchmark #5
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Similar to BP1l, BP2 and BP3 we generate twenty space/angle mesh
discretization sets and solve the resulting one cell benchmark problems
by the DFD and FEM methods of this chapter. The equally spaced mesh
intervals are successively halved in length so that h = .5/1 (1=1,2,4,8,
16). The angular quadrature for the DFD method is the PN quadrature set
(N=1,2,4,8) for the interval (0 < y < 1). This corresponds to the same
quadrature sets used in the previous examples for each half range of
(i.e. 0 < p <1, -1 <p<0). The FEM quadrature sets have equal spaced
mesh points with Ap = 1/§ (j=1,2,4,8). At the interface x = .5 we apply
the inhomogeneous source boundary condition Eqn. (3.17) which supplies
the even parity flux values w;(.S,u). This means we need not solve for
wZ(.S,u). The values of w;(.S,p) are substituted into the matrix equa-
tions for the unknown fluxes and the resulting terms are transferred to

the right hand side of the equations and treated as a source term.

The maximum absolute scalar flux error "iE"m with associated sign
is tabulated in Table 3.1. For all but the highest order quadrature set,
the error EE reaches a minimum and subsequently begins increasing as the
number of mesh intervals increases. Figure 3.5 illustrates the scalar
flux error behaviour for the DFD and FEM methods. For a majority of the
discretizations the maximum error successively shifts towards the mesh
interval adjacent to the interface at x = .5. Here w;(.s,u) is specified
exactly so that the scalar flux error is due to the angular quadrature
discretization only and as we expect the error is reduced at the inter-
face. As observed in previous benchmark problems the angular quadrature

approximation has the most significant effect on the error and the spatial

discretization is not as important.

The even parity angular flux error "wE"w is tabulated in Table 3.2.
Eight selected error traverses corresponding to I = 16 or M = 8 (DFD)
and M = 9 (FEM) are displayed in Figs. 3.6 and 3.7 at x = 0 and x = .25
respectively. For the 8 angle discretization in the DFD method and for
nearly all angular discretization in the FEM method, the angular loca-
tion of the maximum error is located at the angular coordinate nearest

to zero. As we approach x = .5 the angular error decreases due to the

exact boundary condition and the location of the maximum error shifts

closer to p = 0,
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Table 3.1. Maximum absolute signed scalar flux error iui " tabulated

for twenty space/angle discretization sets of“B
e
for DFD and FEM methods nchmark #5

BEAPAC 05/76 BP# 5.5 1 CELL HODSS ANALYSIS ¥%(0,.5) S=1, X(.5,1.5) S=0, NUO=1.05

MAX. ABS. SCALAR FLUX ERROR AND LOCATION (GLOBAL)

I: NO. OF XMESH INTERVALS J: NO. OF MU POINTS
J . 1 2 4 8
T .
ERROR 1 . 9.58D-02 -2.73D-02 -5.33D-03 1.26D-02
EXACT . 1.113 0.790 0.790 1.113
X 1LoC . 0.0 0.500 0.500 0.0
ERROR 2 . 1.02D-01 =-3.76D-02 -5.33D-03 7.€4D-03
EXACT . 1.064 1.113 0.790 1.064
X LOC . 0.250 0.0 0.500 0.250
. FRROR & . 1.01D-0%1 =-4.12D-02 ~-6.30D-03 4.51D-03
(a) DFD EXACT . 1.064 1.113 1.113 0.976
X LoC . 0.250 0.0 0.0 0.375
ERFOR 8 . 1.00D-01 =-4,24D-02 =-8.20D-03 2.80D-03
EXACT . 1.064 1.115 1.027 0.907
X LOC . 0.250 0.063 0.313 0.u438
ERROR 16 . 1.00D-01 -4.27D-02 -8.93p-03 2.33p-03
EXACT . 1.064 1.115 1.004 1.004
X 10C . 0.250 0.063 0.344 0.344
BEAPAC 05/76 BP¢ 5.6 1 CELL KODES ANALYSIS X(0,.5) 5=1, X{.5,1.5) 5=0, NUG=1.05

MAX. RBS. SCRLAR FLUX ERROR AND LOCATION (GLOERAL)

I: NO. OF XMESH INTERVALS J: NO. OF MU POINTS
a. 2 3 5 9
I .
ERROR 1 . 6.14D-02  4.18D-02 ~4.67D-02 =-5.97D-02
EXACT . 0.790 0. 790 1.113 1.113
X 10C . 0.500 0.500 0.0 0.0
ERROR 2 . 7.21D-02  4.180-02  1.23D-02 -1.76D-02
EXACT . 1.064 0.790 0.790 1.064
X LoC . 0.250 0.500 0. 500 0.250
e ERROR 0 . 9.03D-02  5.070-02  1.23D-02 -8.01D-03
(b) FEM EXACT . 0.976 0.976 0.790 0.976
X LCC . 0.375 0.375 0.500 0.375
ERROR 8 . 9.19p-02  5.82D-02 ' 1.72D-02 -2.65D-03
EXACT . 0.907 0.307 0.907 0.907
X LoC . 0.438 G.438 0.438 0.438
FREOR 16 . 9.98D-02  5.85D-02  2.05D-02 =1.99D-03
EXACT . 0.945 0.907 0.860 1.113
X Lo0C . 0.406 0.438 0.469 0.0



122

BENCHMARK 5.5 SCALAR FLUX ERROR PHIE(X) FOR I-16 OR M-8

QW—B—'
3] o~ PHIE(X) 16,1
S o-PHIE(X) 16,2
a-PHIE(X) 16,4
8] +=PHIE(X) 1,8
o x=-PHIE(X} 2,8
- o -PHIE(X) 4,8
o v -PHIE(X) 8,8
e B - PHIE(X) 16,8
(2]
(a) DFD E.f.xz,
a. PO
8 T T __‘I * T T T ® 5
© p-oo—s—6-09 B 10—5—O— 15— 5-30- a.-,zs__,_n_ag_g_;m
(2]
o
? )
b3
z © O ~o>
o
(P

BENCHMARK 5.6 SCALAR FLUX ERROR PHIE(X) FOR I-16 OR M-S

0
i

0-08 0-08

(b) FEM

0-102 0-04

PHIE

[

[ 3
[ 3
| 3
[ 3
- 3
3
[ 3
[ 4

-0-02 0-00

-0-06-0- 04

LEGEND
0 - PHIE(X)
o - PHIE(X])
a = PHIE(X)
+ = PHIE(X)
x = PHIE(X)
o =~ PHIE (X)
v = PHIE(X)
& - PHIE (X}

—D B D) = e e

Figure 3.5. Scalar flux error ¢ (x) for DFD and FEM methods
for eight selected giscretizations of Benchmark #5
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Table 3.2. Maximum absolute signed angular flux error i”yﬁ" for
[+2)
twenty space/angle discretization sets of Benchmark #5
for DFD and FEM methods
BE 5 ‘
APAC 05/76 BP¢ 45 1 CELL MODES ANALYSIS X(0,.5) s=1, X(.5,1.5) $=0, NOO=1.05
HAX. ABS. VECTOR FLUX ERROR AND LOCATION (GLOBAL)
I: NO. OF XMESH INTERVALS J: NO. OF MU POINTS
J. 1 2 y
1. ®

ERKOR 1 . 1.26D-02  9.81D-03 1.15D-02  1.65D-02
EXACT . 0.521 0.690 0.612 0.672
X Loc . 0.0 0.0 0.0 0.0
MULOC . 0.500 0.211 0.330 0.237
ERPOR 2 . 9.630-03 -3.33p-03 1.06D-02  1.28D-02
EXACT . 0.521 0.690 0.761 0.740
X LocC . 0.0 0.0 0.250 0.250
HULOC . 0.500 0.211 0.069 0.102
TRROR & . B8.84D-03  -6.88D-03  7.510-03  6.980-03
EXACT . 0.521 0.690 0.701 0.749

(a) DFD X LoC . 0.0 0.0 0.375 0.375
HULOC . 0.500 0.211 0.069 0.020
ERROR 8 . 8.64D-03 =-7.76D~03 -2.97D-03 1.150-02
EXACT . 0.521 0.690 0.764 0.720
X Loc . 0.0 0.0 0.0 0.438
¥uLOC . 0.500 0.211 0.069 0.020
ERPOR 16 . 8.58D-03 -7.990-03 =1.92D-03  7.74D-03
EXACT . 0.521 0. 690 0.764 0.665
X 10C . 0.0 0.0 0.0 0.469
NULOC . 0.500 0.21 0.069 0.020

BERPAC 05/76 BP#:5.6 1 CELL MODZS ANALYSIS X(0,.5) S=1, X(.5,1.5) S=0, NOU0=1.05

MAX. ABS. VECTOR FLUX ERROR AND LOCATION (GLOBAL)

I: NO. OF XMESY INTERVALS J: NO. OF MU POINTS
J . 2 3 5 9
T .

FRROR 1 . 4.13p-02 -1.49D-01 -1.86D-01 -1.66D-01

EX2CT . 0.338 0.783 0.783 0.783

X LoC . 0.0 0.0 0.0 0.0

BoLOC . 1.000 0.0 0.0 0.0

FRROR 2 . 7.69D-02 -6.54D-02 =-8.20D-02 =-9.48D-02

EXACT . 0.773 0.783 0.773 0.773

X 10C . 0.250 0.0 0.250 0.250

noLoC . 0.0 0.0 0.0 0.0

ERROR 4 . 1.54D-01  7.43D-02 -4.12D-02 -7.320-02

EXACT . 0.750 0.750 0.773 175
(b) FEM X 10C . 0.375 0. 375 0.250 0.375

HULOC . 0.0 0.0 0.0 0.0

ERROR 8 . 2.04D-01 1.520-01  7.50D-02 -3.39D-02

EXACT . 0.733 0.733 0.733 0.750

X 10C . 0.438 0.438 0.438 0.375

KULOC . 0.0 0.0 0.0 . 0.0

FRROR 16 . 2.310-01  2.020-01  1.50D-01  7.42D-02

EYACT . 0,721 0.721 0.721 0.721

X Loc . 0.469 0. 469 0.469 0.469

HoLOC . 0.0 0.0 0.0 0.0
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BENGHMARK 5.5 ERROR TRAVERSES PSIE+[O, MU) FOR I-16 OR M-8

0

a o -PSIE(D, MU 16,1

o4 o~ PSIE(O, MU) 16,2

° a-PSIE(D, MU} 16, 4

+=-PSIE(O,MU) 1,8

2 x - PSIE (O, MU) 2,8

. ¢ =PSIE(O,MU) 4,8

° o v -PSIE(D,MU} 8,8

+,8 ® - PSIE(O, MU) 16,8
8]
(a) DFD @»©

a.

D'POO

-0-010 -0-005

: ]

0-00

-0-05

o - PSIE(0, MU) 16,
o - PSIE (O, MU) 16,
a - PSIE(O, MU) 16,
+=-PSIE(O,MU) 1,
x - PSIE(O, MU) 2,
4,
8,
6,

(b) FEM

psict

-0-10

°~PSIE(0, M)
v = PSIE(D, M)

2
3
S
9
9
9
9
® - PSIE(O,MU) 18,9

-0-15

-0-20

+
Figure 3.6. Even parity angular flux error traverses ¥ (0,u) for DFD
and FEM methods for eight selected discrethations of
Benchmark #5
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BENCEMARK 5.5 ERROR TRAVERSES

PSIEY.25,MU) FOR I-16 OR M-8

-}
° o~ PSIE(.25,MU) 16,1
5. o - PSIE(.25,MU) 16,2
S a-PSIE(.25,MU) 16,4
+=PSIE(.25,MU) 2,8
x - PSIE(.25,MU)4, 8
8 o o - PSIE(.25,MU)8, 8
o v -PSIE(.25,MU) 16,8
+ o
=
a8
e
(=] P.O
5.
?
(=]
=)
?

BENCHMARK 5.6 ERROR TRAVERSES F’SIE+[.25,MU] FOR I-16 OR M-S

—C)-

¢ ——

0-s
MU

0-6

0-7

o-PSIEL.
o ~PSIEI.
a~PSIE(.
+=PSIEL(.
X = PSIEL(.
o =-PSIE(.
v -PSIEC(.

ﬁw L4 rl

0-8 0-9

25, MU) 16,2
25, MU) 16,3
25, [U) 16,5
25,MU)2, 9
25, MU 4,9
25, MU) 8, 9
25, MU) 16,9

*
1

Figure 3.7. E¥en parity angular flux error traverses
¥ (.25,) for DFD and FEM methods for seven

selected diseretizations of Benchmark #5
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The average absolute scalar flux error and the relative sum error
of the scalar flux is tabulated in Table 3.3. The error performance 1is
similar to the angular flux error results previously discussed. For
nearly all cases the error reaches a minimum and then increases as the

number of spatial mesh intervals are decreased.
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Taple 3.3. Average absolute scalar flux error and relative sum
error of pointwise scalar flux for DFD and FEM methods
for twenty discretization sets of Benchmark #5

BEAPAC 05/76 BPI10.F 1 CELL MODES AMUALYSIS X(0,.S5) S=1, X(.5,1.5) S=0, ¥UO=1,05
. . ] .

A¥G. ADS. SCALAR PLUX ERROR (GLOBAL)

I: ¥O. OF X3ZSH INTZRYALS  J: HO. OF U POINTS
3. 1 2
T . ' *
PRROR 1 . 5.90D-02  2.56D-02  4.46D=03  7.19D-03
ERFOR 2 . 7.130-02  3.110-02  3.990-03  4.265-03
(a) DFD ERFOR & . 6.030-02  3.199-02  5.64D-03  2.91D-03
PaEOR 8 . 8.540-02  3.14D-02  6.300-03  2.30D-03
PRROR 16 . 8.800-02  3.100-02  6.470-03  2.050-03
B22PAC 05/76 BPI10.6 1 CELL HODES ANALYSIS X(G,.5) S=1, X{.5,1.5) 5=0, WU0=1.05

A¥G. ABS. SCALAR FLOX ERROR (GLOBAL)

I: EO. OF INESHE INTERVALS J: EQ. OP MU POINTS
' 2 3 s 9
1.

seroE 1 . 8.220-02  3.290-02  2.95D-02  3.030-02

ghROR 2 . 6.010-02  3.010-02  6.46D=03  7.89-03

(b) FEM pREOR @ . 6.850-02  3.700=02  1.000-02  3.620-03
peROP 8 . 7.200-02  3.990-02  1.210-02  1.570-03
psgoR 16 . 7.410-02  .120-02  1.29D-02  1.40D-03
BEAPAC 05/76 Bp2105 1 CELL MODES ANALYSIS X(0,.5) S=1, X(.5.1.5) s=0, K00=1.05

2PL. ABS. SCALAR PLUX ERAOB {(GLOBAL)

I: 0. OF IMESH INTERVALS J: 0. OF 30 POINTS
3. 1 2 . 8
1 .

2RSOR 1 .. 6.200-02  2.69D-02  4.690-03  7.56D-03

pERoR 2 . 7.219-02  3.14p-02  8.030-03  4.300-03

(c) DFD raeog & . 7.950-02  3.150-02  5.590-03 2.630-03
sxsoR 8 . 8.360-02  3.073-02  6.170-03  2.250-03
pagos 16 . £.570-02  3.020-02  6.30D-03  2.000-03
BEAPLC 05/76 BP#10.6 1 CELL 8OUES AMALYSIS x(0,.5) s=1, !(.5,1.5) S=0, ‘#Y0=1.05

gEL. ABS. SCALAR 710X ERROB (GLOBAL)

L: ¥o. OF TSESH INTERVALS  J: WO. OF 30 POINTS
3. 2 3 s 9
2
pagoR 1 . 8.08D=02  3.46D-02  3.100-02 3.190-02
sR@oR 2 . 6.080-02  3.04D-02  6.530-03 7.98D-03
(d) FEM ravon & . 6.780-02  3.660-02  9.910-03 3.590-03
caron 8 . 7.090-02  3.910-02  1.100-02 1.830-03
(Eror 16 . 7.220-02  4.010-02  1.250-02 1.360-03
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IV. SUMMARY AND CONCLUSION

We have shown how exact one-or two-cell benchmark problems can be
created for arbitrary cells within a multicell reference problem using
eigenmodes of the homogeneous one-dimensioned monoenergetic transport
equation with isotropic scattering. The benchmark problems can be
created by manually or automatically selecting eigenmodes combining

coefficients.

Several benchmark problem examples illustrated most of the fundamental

capabilities (summarized below) of the BEAPAC-1T code.

(1) one or two cell standard and even parity (symmetrized) angular

flux benchmark problems.
(2) inhomogeneous vacuum and reflecting boundary conditioms.
(3) manual or automatic benchmark solution synthesis.

(4) error analysis of built-in or external methods (via interface

files).

(5) relative or absolute error tabulation of maximum, average or

relative sum errors of angular and scalar flux.

(6) simple specifications to create arbitrary sets of space/angle

mesh refinements for any benchmark problem.

(7) residual calculations for checking the accuracy of the

eigenmodes.

The advantage of this automated approach to error analysis is that
with a few hours of work and negligible computation costs, the analyst
can obtain detailed information on the error performance of a particular
method for a particular problem configuration. The major task required of

the analyst is to supply the necessary interface data sets to BEAPAC-1T.

Item (7) above proved to be useful in debugging the eigenmodes cal-
culation. The fact that the eigenmodes are exact solutions was an
invaluable tool for debugging the transport theory methods built into
BEAPAC-1T. Using the interface files of BEAPAC-1T, these exact solutions

could be used for similar purposes in externally developed codes.
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The least squares modes analysis method has a number of unanswered

questions related to the optimum number of modes and placement of least

squares points. The results so far are rather encouraging. Implementa-

tion of a variant of this method is planned for 1-D transport calculation.

Extensions of the benchmark error analysis techniques to two- and
three-dimensional methods is under way.
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APPENDIX A

Chapeau Function Expansion of A(v)

A.1 The Expansion for the Angular Flux

A.1l.1 The standard basis

In Section 1.1.3 we constructed benchmark solutions wB(x,u) in a

cell D(0,a) of the general form

N
(1.9) bplow) = § oa, g, (x,m).
n=0

The transient elementary solutions qin(x,u), (n=0,1,...,N-1) in
the standard basis are obtained from the genmeral solution (1.4b) by

requiring A(v) and K(—v) to have the form

N-1
(1.11a) A(W) = } a0 (v) 0<v<l1
neg B D
- N-1
(1.11b) AW) = ] 3a_0 _(-v) -1<v<0
n=g B D
The On(v) are the Chapeau functions defined by
AVEERY
n-1
V12V n=12,...,N=2
Av n-1 n
v -V
n+l =
(1.12a) en(v) = <——Z;;——— vn <v 5-vn+l n=20,1,...,N-2
0 otherwise
(
where Avn = Vo1 " Vo

ON_l(v) is treated in Appendix A.1.2,
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The construction of qn(x,u) will now be developed for the first
integral in (1.4b) which, upon substitution of (1.11), yields

vn+1 -x/v
(1.13a) qn(x,u) = On(v)¢v(u)e dv (n=0,1,...,N-1)
“n-1

Substitution of (1.7), (1.8) and (1.12a) into (1.13) yields

vV v-v v v o .=V
_ E‘J n n-1 v -x/v o+l notl v =x/v
(A.1D) qn(x,u) > ) Z;;:I—-;:; e dv + ) -7G§:—-;;;I e dv|.
n-1 n
+ On(v)(l —-% U 4n %;% )e_x/u (n=0,1,2,...,N-2)

The first term on the right hand side of (A.l) can be manipulated so

that
v vV - v
n n-1l v -x/v, _ 1 _
(A.2) J e el dv = 7= [y,o1(®) + (u=v )8, (x,1)]
v n-1 n-1
n-1
where
(v_,v ) v _
(A.3) Ya(®) = E, LN J wHl | X/,
\Y
n
and
(v ,v ) v
+1 + -
(A.4) BGom) = I % T (x,u) = J o Tooe go,
v
n

By similar manipulations, the second term on the right hand side of (A.1)
is

v v -\
A.5 ntl ‘nt+l v -x/v ___1 _
( ) J A\)n VvV - u € dv A"n [Yn(x) + (U Vn+1) Bn(X,LI)] .

v
n
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Upon substitution of (A.2) and (A.5) into (A.1l), we obtain the equations
(A.6a) to (A.6e) summarized in Table A.l1l for the various values of .
Eq. (A.8) is obtained from

Bn(x’u) = Bn_l(xﬂl) + Bn(x,l-l)'

Appendix B gives formulas for the evaluation of yn(x) and Bn(x,u).

A.1.2 A special basis element

In Section 1.1.3 Eq. (1.12b), we introduced a basis element ON l(v)
which improves the approximation basis for A(v). The corresponding

elementary angular flux mode of (1.13a) becomes explicitly

B 1
A9) a4y 6w =3 J o (v) —= X Vay + J N ¥ Vgy
B

where

which supplements (A.1). The parameter b is chosen to insure series

convergence in the second integral of Eq. (A.9).

The first integral in (A.9) is evaluated exactly as the corresponding
integral in (A.1) illustrated in Table A.1l, except for one special case

where y = v Here we define

N~-1°
(A.10) g 2“’—zLe""/"cl -1 Yo o(x) + (u-v VB ,(x,1)]
’ Avy_p, VR v AV o TN-2'% MoV ) g (00
V.

N-2
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(A.6a)

(A.6b)

(A.6c)

(A.64d)

(A.6e)

where

(A.7)

(A.8)

qn(x,u)

qn(x,u)

qn(x’U) =

qn(x,u) =

q.n(xsl-l)

Gn(x,U)

8_(x,)

Table A.1 Computational equations for q (x,u)

%{Avn_ll}n_l(x) + (u-vn_l)Bn_l(X.u):l - -Ai_n v, (%) + (u-vnﬂ)Bn(x,u)J} + G (x,u)
n=0,1,...,N-2, yu # v m= 0,1,...,N-1
=< 1 1 2
) {Avn_l[Yn—l(x)_] - Avn [Yn(x)] + Bn(x’“) } + Gn(x,u)
n=1,2,...,N-2, u = v,
c 1
2 {Avn_ll}n_l(X):I - A_"n Yn(x) + (u_vn+1)8n(x’“)J} + G_(x,u)
n=1,2,...,N-2, yu = Vo1
% {A\,l l[Yn_l(X) + (u-vn_l)Bn_l(x,u)] - ﬁ Ern(x):l } + G_(x,u)
n- n
n=0,1,...,N-2, u = Yo+l
1
% { - E{: I:Yn(x) + (u-vn+1)8n(x,u):|} + G (x,u)
n=0, u-= v,
) (u)k(u)e_x/11
‘Tl
(v 'V )
Il n-1° n+l (x,vn)
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where
~ (vy_,sB) B _
(A.11) Yy_o(®) = Eg N2 () = j ve Vg,
“N-2
. (vN_Z,B) B v -x/v
(A.12) Bog (o1 = I, (x,u) = J - dv
N-2

The second integral on the right side of (A.9) is a Cauchy principal

value integral with singularity at w = v. It is denoted by G(x,u) where

(A-13) G(st) =1

N4

YN-1 VVN-2 v Vg e
AvN_ 5 VU VoW Vn
L\)N—l-b y
1 a
+ J (Ai v ) vru e X/vdv.
v N-1
N-1

Eq. (A.13) is evaluated using power series expansions which will be derived
at the end of this section. The domain of integration is denoted by

Dp’ (r =1,2,3,4,5) where the index p is determined by the location of

u with respect to Vy-1 and 1. To obtain rapidly converging series and

to treat the singularity which occurs when v = u, the domains of integra-
€D } s

q PP
p=1,2,3,4,5. There are five classes of subdomains SDq, q=1,2,3,4,5

tion Dp are partitioned into a set of subdomains {SDq|SD

which may be applicable to the integration over Dp. The domains Dp and
their partitions {SDq}p are illustrated in Table A.2.

The integral in Dp belongs to a class of Cauchy principal value

integrals of the general form

1
(A.14) G(x,u) =P i g(v,me M Vay

[0, (L) - %6, (L] + x°Gy (x,u)
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Table A.2 Partitioning of the Integration Domains D for T(v,y)
| 4

*
DOMAIN Subdomains Convergence Recommended Y

1
= — < —_—
D, {SDl} SDy:  1-Y 1 Y>3
D, = {SD,,SD.} Sp.: 1-y < =1
2 2°°°1 1P LA
SD2: vy <1
D3 = {SD3,SD1} SDl: 1-y < 1 %< ¥ <%
SD,: Yy <1
3
D4 = {SD4,SD3,SD1} SD1: 1-y <1 y =%
SD3: vy <1
SD,: 1
4 T+ <1
_ / = .
p=1 y D5 {SDS} SDS' unconditional
/
Y = *
V-2 VN-1 F1 b = v(1-})
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where g(v,u) will have the form (A.18) in this section;

v
(A.15) Glp(v,u) =P J g(v',u)av’
' B
v G (v',ﬁ)
(A.16) G2 (v,u) = J dp dv'
P 1y 2
3 "
. 16, (v,n)
(A.17) G3P(v,u) = J -jhlji——— e-x/vdv
v
B

If we define

_ v

(A.18) g(v,u) = ON_l(v) —

then Eq. (A.14) corresponds to Eq. (A.13). Upon substituting (A.18) into
(A.15) we can develop computational expressions for (A.15), (A.16) and
(A.17). To simplify the resulting expressions we define the following
integrals., Let

v '
- ' v 1
(A.19) I(v,u) = J ON_l(v )V'—u dv
B
=T (vu) +u L I (v,u)
0 sp p 1
q p
where
v
(A.20) Io(v,u) = J ON_l(v)dv
B _
in(v_,v) O, ")
(A.21) I,(vW) = rl q 13—,}1—1—— dv'
Xq

Vv and v_are the respective upper and lower integration limits for sub-
domain SDq. Table A.3 summarizes the computational expressions for
(A.20) and the five subdomains for (A.21). Upon substitution of (A.19)
into (A.15), the computational expression for (A.1l5) becomes '
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Table A.3 Subdomain Integration Formulas

Integration Formulas 0 <a <1

(rov_ 2yv, )
(v vN—Z) N-1 .
2o, b 5
(A.20a) Io(v,u) = ﬁ \)N--l—'b
0 W vy
¢ = 1-v /
o atk|{™ ~ 1-p
-(1- t
(A.21a) I,(v,u) = ( 2) I =%
Bvg_q k-1 It _ 1-p-b
1-u
SO
(A.21b) I _(v. ,+b,v ) = + ) 5

(A.21df 14(v,u)

(A.21e) Is(v,l)

o © Zk-l
-y (=" ¢y __
(A.21c) 13(u+b,u) = -2 a z (zk—l) 2k-1
Av k=1
N-1
o o Lou
k- T 1
- (l—uza 2 t 1=y
AvY . k=0 k-a 1-p
N-1 EE 1
N-1
t=v
= la (l-\))a
alv =
N-1 t= Y1

*
When a=1 the

series term for k=1 is log t.

Convergence b = y(1-p)

v
$ _ 1 (1—V')a+l
o+l AV§-1 y
N-1
1-y <1
- b
1-v
N-1 y <1
= 0
=P
1-u
y <1
=0
1
—_ <
1+y 1
unconditional

SD.

SD,:

SD_:

SD,:

v Sv<Vv
9= ~ 9
Subdomain Range

u<l1 /r
— /7 |\
vy =1 4o
v, = ytb -,J
-1
1 vN—l 1
_P = vN-l \\
v, = utb / \
v, = u-b £- -1
=2 V-2 ¥
2=
N-1 SH S 1 /| \
\)3=u+b /| \
/]
Vg = ub PR 1. I
Vg VN1 ¥ 1
5
130y D et 7 VAT
5 = ub / i\
0 "M AN
Yy = Vy-1 V§-2 VN1 M 1t
u = /
v = //
v, = L_ -
-5 N-1 9
V-2 VN1 WL
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(4.22) Gp(va) = Li(vom) + ] I, p=1,2,3,4,5
SquDp

By definition (A.16) can be written

Vogur (Y V"'

(A.23) G2 (v,n) = 5 j 5] (\)")T dv'" .
P ) R

B B
It can be shown that the interchange of integration in (A.23) is valid,
so that

v " v '
A, 24 = "y " dv
( ) Gzp(v,u) J 01 V' vy f 7

8 ‘ W ")

which simplifies to

[

I 1,000 - 56 )

(A.25) G,_(v,n)
2p spep @
q~p

Substituting (A.22) into (A.25) we obtain

(A.26) Gppvo) = (1-%) T T v =< Iy(v,m) .
sp en 4
q p
Eq. (A.17) must be evaluated by numerical integration. The function
Gzp(v,p) in the integrand is a well behaved function as required for the
interchange of integration to be valid in (A.23), so that the numerical
integration is practical. We also note that the integration domain size

3

is typically on the order of 10 ~ for the ON_l(v) element, hence

AvN—l
the truncation order associated with the numerical integration is
0(10—3k) for quadrature rules of order k. The numerical integration
formulas for each domain Dp are summarized in Table A.4. The quadrature
points are chosen subject to the condition that any subdomain boundaries

must coincide with a quadrature point (illustration in Table A.4).

In the first quadrature interval for each domain DP, the intégrand
is approximated by a quadratic polynomial. It is easily shown that the

integrand and its first derivative with respect to v are both zero when
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(A.233)

(A.23b)

(A.23c)

(A.23d)

(A.23e)

Table A.4 Numerical Integration of G3p§x,E2

Integration Formula

K

Gy (x1) = )

G33(x,u)

G34(x,U)

G35(x,1) =

k=

K

0

0

“x

G21(tk,u)

2
t

-x/t

k

2
Y
2
b
G24(tk,u)
2
e
Gps5 (b2 1)
2
T

e

_x/tk

Integration Parameters (k=0,1,...,K)

Quadrature Points

= {UN_l,U,U'*‘b,l}» b = U"VN_l

- R, 3, L 2

~ ON-1
Ve-1 + kh, h = 3 ,
/
h /
{1,2,4,1} 2, k=3 ﬁFb
3
f..ll!‘ -
Bvy_q N-1
{vN_l—b,vN_l,vN_l+b,l}, b=m1n(AvN_2, ——2—) ,\
2 sb f3h "3} s 6&‘
36 2 2 b ne
"

1-t

36 2 2

}, k=3

5 —
{VN_lsU'b,H,U"'b,l}, b = 8(1"11), K=4

/
—_ {Eg. Egtg .éh E.+ Eé. El} h =t -t //
=13° "3 °>3°37 22" % i [
Mvg_q VN-2 V§-1 ¥
VN_l 4+ kh, h = 3 y
/
{1,2,4,1} % K=3 s
VN-2 N-1
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v = B. In the subsequent intervals, Simpson's rule is applied for equal
mesh intervals when p = 1,4,5 and trapezoidal integration is applied for

unequal mesh intervals when p = 2,3.

Eq. (A.22) and (A.26) can be substituted into (A.14) to obtain

(A.27) G(x,u) = e {(10)T (L) + [u-x(1-w)] | Iq(l,u)} + x2G3p(x,u).

SD €D
q p

Substitution of (A.10) and (A.27) into (A.9) yields the general compu-

tational expression

(A.28)  ay_; G = Sy, (®) + (u-ve DB, (1) + Gx,m)] + G_g (xum).

The derivation of the series expressions for Eqs. (A.2la) to (A.21d)
is now given. The series are of two types depending on whether or not
the subdomain includes the singularity v = 4. When u = 1 (i.e., SD5) the

integral in (A.21) is evaluated directly.

Consider the non-singular case first (i.e., SD1 and SD4). The

integral of (A.21) is expanded in the following series.

o a
(1-v)~ _ (1-v)
(A.29a) vV - u (l—U) _ (l—\))
o
a=-1 t - -
= (1-p) T where t = T~/ < 1
i.e.,
a [+]
- - k
(A.ng) (1__\)_)__ = (l_u)a 1 t(l z t
v H k=0
so that for SD1
1-v
v
1-u ©
1 1-v)H* --w? atk
(A.30) Il(\),u) = 5 \()' — 31 dv' = A\)a Zot dt
AVN_l g N-1 1-v
N-1 N-1
where dv' = -(1-p)dt 1-w
i.e.,
1-v
o otk |1~y
~(1- t
(A.31) Il(v,u) = ( au) Z atk Ho< vN—l v
bvy, K1 1-v
N~-1

l1-u
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For SD4 the substitution

P TR § = 1Y
z 1-v o dv 22 dz

is made in (A.29a) and (A.30) so that

1-y
1-v
a o k-a
(A.32) 1, (v = -4 72 gy <V <M
4 a? . k=0 k-o N

N-1 1-u

1_\) a # 1
N-1

Next consider the singular case (i.e., SD2 and SD3). The integral

in (A.21) is separated into two integrals so that

pt+b @N-l(v) H eN-l(v) u+b eN—l(V)
(A.33) Iq(V,U) = T dv = T dv + BT dv
u-b u-b u
' q=2,3
When q=3 the change of variables s = v-p in (A.33) ylelds
Sl-u!a b S Yo s yayds
(A.34) I(v,0) = - >, {(1+ 1—] - {1 - 1—] ==
Av U =H s
N-1 0
Let
s
(A.35) t =

1-u

and expand the terms in braces in (A.34) so that

(A.36a) (1+0)% = 1+ (Je + (;)cz + (g)c3 +...
2
(A.36b) -0 =1- e+ - (P +..

Subtracting (A.36b) from (A.36a) and substituting the result into (A.34)

we obtain
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b
RN R il :
w3 1y = -G [V @ s (8 4 (e 40} &

o 5 t
Avga1 o
i.e.,
¢ o b
- 2K-1 1-u
(A.38) 13(\,,“) = 2& 2 (2‘;_1) t__
Avg_, k1 2k-1
t=0

When q=2 the change of variables s = y-py in (A.33) yields

) ,
_ s 8 19, ds
(A.39) I(v,vy ;) = —j G-z -0-71%.
. N-2 N-1
Let
(A.40) t = —>
AvN_l

and expand the terms in braces in Eq. (A.39). Note that in this case the

term corresponding to (A.36a) is simply

(A.41) 1-t
AvN_2

and the second term is exactly given by (A.36b). Subtracting (A.36b)

from (A.41) and substituting the result into (A.39) we obtain

b
Av
_ N-1f 20 3oy dt
(A.42) I,(v,n) = [ [(1] By 2] t [2) +t (3) cee? T
0
i.e.,
g = L2
Av
b @ o ("t) R N-l
(A.43)  I,(v,u) = 7= + 1 ( )—k—
N-2 k=1
t=20
The series just derived for I (\),‘p), =1,2,3,4,5 are all conver-

gent. The speed of convergence is dependent on the parameters y, b and y
which are related by the formula b=y(1-u). Tables A.2 and A.3 include

a summary of the range of y values which will make the series converge.
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Table A.2 includes a column which summarizes recommended values of Yy for

rapid convergence.

The selection of quadrature points for evaluating Eq. (A.17) in
subdomains SD2 and SD3 is restricted to the subdomain endpoints due to
the symmetric nature of the series evaluation. We can utilize Eq. (A.26)

when py=v so that

\ 1

(A.44) G, (v,v) = (1 -} ] I (v,v)-=T(v,v)

2p v op®ep 4 v 0

q

i.e.,
(A.45) G, (V,v) = - = I (v,v)

2p" ° v 07’
Therefore, we can include the quadrature point v=u for domains D2’ D3 and

D4 which use SD2 or SD3 as illustrated in Table A.4.

A.2 The Expansion for the Angular Flux Derivative

A.2.1 The standard basis

In Appendix A.l.1 we developed explicit expressions (A.6a) to (A.6e)
to calculate {qn(x,u)}, the elementary angular flux solutions. These

results are extended to calculate

(1) N
(A.46) H qn (X’U) - U 3X qn(xsl-l)
where qgl)(x,p) is the derivative with respect to x of the elementary

angular flux. The computational equations are the same as Eqs. (A.6a)
to (A.6c) with the following modifications of the yn(x), Bn(X,u) and

Gn(x,u) terms.

The Yn(x) term becomes

3y_(x) Vn+1

9 -X/V —x/Vv (\) sV )
(A.47) I ——%;-— - = ve x/ 4y = - . x/ av = -uE, n’ o+l (x).



145

The Bn(x,u) term becomes

v
3B (x,u) n+1 Y4l - /
> 3 v - / n X/ V
A.48 e Dleapupe B B TR e
( ) u 5% e { w—p & dv= —uj v v =
vy v
v_,v_ )
= —u I0 n’ ntl (x,u).
The Gn(x,u) term becomes
(A.49)  w—S—— =y =0 (A(e ¥ - —encu)x<u>e'X/”.

When u=0, n=0, and x=0, a special limit case occurs in (A.48) and
(A.49). Eq. (A.48) becomes

28,(0,1) 0, 1)
(A.50) lim p TTax = <1lim u Io (0,u) = 1im 1 log u > 0
>0 w0 w0
and Eq. (A.49) becomes
3G, (0,n)
(A.51) 1im u —Oa—x— = lim aa—x 9,(0)A(0)e x/u = -1.
u>0 w0 x=0

A.2.2 A special basis element

(1)

The elementary anguiar flux derivative qN_l(x,u) associated with the
special basis element ON_l(v) is calculated by differentiating Eq. (A.28)
with respect to x. The resulting expression for g% G(x,u) will be derived.
The remaining terms have already been treated in section A.2.1.

The derivative of a(x,u) in Eq. (A.27) becomes
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@5 EV 0w = L G

e {x1 (1,0) - [x(1-w)-1] ] Iq(l,u)} +

SD €D
q p
2xG4 (x u) - x G(l)(x,u)
where
G, (v,n)
1) _ 9 2 ? -x/v
(A.54) G3p (x,u) = - ™ 3p(x sH) = J v3 e .

B

The integration in G(l)(x
(A.23a) to (A.23e) that were used to integrate G (x u) Eq. (A.17). The

,4) 1s performed numerically using the formulas

only difference between G (x u) and G§ )(x,u) is in the denominator of
the integrand. The té term is replaced by t3 in formulas (A.23a) to

(A.23e) to calculate G;;)(x,u).

A.3 The Expansion for the Scalar Flux

A.3.1 The standard basis

The elementary scalar flux is defined by

1
(A.55) q§'1)<x) - f q_ (x,u)du.
21

The normalization condition [Case 1967]

1
(A.56) J ¢,(W)du =1
-1

assumed in the derivation of the general solution (1.4a) simplifies the

(- l)(x)

development of q

Substituting (A.1l) into (A.55) and reversing the order of integra-

tion in variables y and v, we find
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v
-1 novv o - ntl v v
o n
n-1 Yh
(n = 0,19 .,N—Z)
(v sV ) ( )
= l n-l n n_l’ n -I
Avn—l E53 (x) - v _1E2 (x)J
(V Y ) (V v )
1 1 4
- _Avn E3 n’ nt+ (x) - VnEz n’ ntl (X):l

., (vn’vn+l)
where (A.56) was applied to the integration over pu. The En (x)

functions are described in Appendix B.

(—l)(x) is calculated by

The elementary scalar flux a_,

(A.58) q(_l)(x) = qé_l)(a—x)

-n

A.3.2 A special basis element

(-1)
N-1
basis element ON_l(v) is defined by

The elementary scalar flux g (x) associated with the special

_ (Vg sV 1) (Vg sV 1) _
(A.59)  ai P () = =i— - ,:EB N2y -y B, N (x):J + ¢y
N_

where

1 a
(A.60) ¢y = J B av .

N-1
YN-1

The Eia’b)(x) terms are derived in (A.57).

Similar to Eq. (A.l4) we define the general class of integrals

1
(A.61) §D ) = J g(v)e'X/“dv
VN-1

—x (- - -1
e X{Gi 1)(1) - XGé 1)(1)} + X2G§p )(X)
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(A.65) in this section;

AY]
(A.62) Gi—l)(v) - f g(v')dv’
VN-1
(-1) v Gi_l)(v')
(A.63) G, (v = J L v’
v ")
N-1
(-1)
1 G (v)
(A.64) Gg_l)(x) - J —iﬂlif——- e X/ Vg,
Vv
YN-1
If we define
(A.65) g(v) = (Al‘“ )a
VN-1

then Eq. (A.61) corresponds to Eq. (A.60). Upon substituting (A.65) into
(A.62), we can develop computational expressions for (A.62), (A.63) and

(A.64).

The computational expression for (A.62) becomes

v
o+l
(-1), . _ =1 (1-v'
(A.66) 6 "M =3 (AvN_l) y
N-1
By definition (A.63) can be written
v v' a
-1 ' "
(A.67) 6y (v = J e j V) vt
v (v") f N-1
N-1 N-1

Interchanging the integration of V' and V" we find

dv'

(A.68) 5

_ \Y gt a \Y
G; Dy = J By gy
“N-1 W "

YN-1
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which simplifies to

(A.69) SEOEE WORE RIS
where
* v 1-y" a "
(.70) I'(v) = J ) &
Av !
v N-1
N-1

Integrating (A.70) by parts we obtain

v
o]

(4.71) () = log v"(i;;"lJ + 10D (g

N-1
where

o-1

g log V' (1~-v")" “dv"

.72y 1Dy -

o
Av
N-1 N-1

0, 1-v a-1
- o j log(1-t)t dt
Av

N-1 1—vN_l

o 1-v o t:ot+k-1

o z k

v : k=1
N-1 l-vN_l

dt
A

Evaluating the last integral in (A.72), we obtain

t = 1-v
© otk
(A.73) Dy =2 7 &
o Lo (a+k)k
AvN—l k=1 £ = Av
N-1

We note that t = AvN-l > 1-v is typically on the order of 10_3 and is
always less than .25 so that convergence is rapid in (A.73).

Eq. (A.64) must be evaluated by numerical integration. The function
Ggﬁl)(v) in the integrand is a well behaved function so that numerical
integration is practical. Four equally spaced quadrature points tk are

chpsen so that
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(A.74) = kh + v (k = 0,1,2,3), h =

tk N-1
The integrand is approximated by a quadratic polynomial in the
first quadrature interval. It is easily. shown that the integrand and
its first derivative with respect to v is zero when v = Vy-1° In the
subsequent intervals Simpson's rule is applied. The composite integra-

tion formula for (A.64) becomes

3 G, (t,) -x/t
(A.75) Gg-l)(x) =] w2 K
k=0 t
k
where
h
(A.76) {w [k=0,1,2,3} = {1,2,4,1}3 .

Substitution of (A.69) into (A.61) yilelds the computational

expression

(A.77) e = e ame ™) - x' W)+« o
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APPENDIX B

Exponential Integrals and Related Functions

B.1 The Exponential Integral E (x)

B.1.1 The general expression

The classical exponential integral is

(B.1) Ei(x) = —J £__ at (x #£ 0)

-X
where the integral is a Cauchy principal value integral when x > 0.

The functions En(x) are generalization of the function

© -t
(B.2a) El(x) = J -E~EQ£ = -Ei(-x) (x > 0)
x
and are dgfined as follows.
© =t 1
(B.3) E (x) = &1 J E_H dt = J vt 2e x/vdv (t = x/v) .
t

Using integration by parts it is easy to show that

(B.4a) E_(x) = ﬁ [e™ - xE__ (0] (n > 1)

Using the FORTRAN routine DEI in the Argonne Applied Mathematics Division
program library (Cody 1971) the function Ei(x) is computed on the IBM
370/195 to roughly 50 correct significant bits which is equivalent to a
relative error of 10_15. Eqs. (B.2a) and (B.4a) are used to calculate

En(x) for n > 0.

B.1.2 Limit cases

En(O) has two limit cases depending on the value of n, If n = 1,
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1

-+ ®©

1 e—x/v 1 dv

(B.2b) El(O) = 1im J dv = J — = log Vv
0 v v

00 0 0

i.e., the limit does not exist. If n > 1, then using (B.4a) we find

= 1ip L [&7¥ _
En(O) = lim -1 [e xEn_l(x)]
x>0
= —lI [1 - 1im x E _l(x)] -
n- %0 n .o
= —f—l— [1 - O0+...40 + 1lim x“’lEl(x)]
o x+0
(B. 4b) E_(0) = —— (n > 1)
) n n-1
where
1
1lim xn_lEl(x) = lim xn_llog v[ =0 (n > 1)
x>0 x+0
X
(a,b)
B.1.3 The generalized exponential integral En (x)

We define the generalized exponential integral Eéa’b)(x) by

b
(B.5) Eia’b)(x) = J Vn—2 e—xlvdv (x>0, 0<a<b<l, n>0)
a
x/a -t
= x" 1 -EH— dt (t = x/V)
t

x/b

We define E{a’b)(x) as follows.

/a -t = w -t
Jxaert= J—J)ert.
x/b x/

x/b

Eia’b)(x)

13

Hence by (B.2a) we have

(B.6a) Eia’b)(x) = E, (x/b) - E, (x/a)



153

Integration by parts of (B.5) gives

(B.7a) Eia,b)(x) = ;%I [(bn-le—x/b _ an—le—x/a)

xE 22D ()] (n>1) .

B.1.4 Limit cases for the generalized form

We consider the limit cases of (B.6a) and (B.7a). First, when x=0

and O<a < b<l, we find from (B.5) and (B.2b) that (B.6a) becomes

A\

b
(B. 6b) (a 2 0y = J v _ 10g b/a

a

and from (B.4b) and (B.6a) that (B.7a) becomes

(B.7b) Ega’b)(O) - E%I ™1 - 2t (n > 1)

Secondly, when a=0 and x>0, (B.6a) becomes

(B.6c) Eio’b)(x) = E, (x/b)
and (B.7a) becomes
(B.7c) 20 o = L e ™/P - (0P (xm)) (a > 1)

Finally, consider the case when x=0 and a=0. Then (B.6b) becomes

(B.6d) (0 b)(0) = 1im log b/a + =
a0

and (B.7b) becomes
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bn—l

n-1

(B.7d) Eéo’b)(O) - (n > 1)

B.2 The Exponential Integral I‘(x,gl
B.2.1 The general expression
The integral In(x,u) is defined (Abu-Shumays, 1973) by

1 vne—x/v

oo v (>0, x>0, |u|<1)

(B.8) In(x,u) z J
0

It is easily shown that the following recursion relation holds.

1
(3.9) LG e = [ W er 00 @20
0
We obtain Io(x,u) from (B.8) as follows.
1 e—x/v © ot x
(B.10) Io(x,u) = J — dv = J — dt (t = -V')
0 el - 0
" et -x/u [~ e ' _ x
= — dt - e —dr (1=t - =)
t T u
X -(x/p - x)
Hence, using (B.l) and (B.2a) in (B.10)
(B.11a) Io(x,u) = El(x) +e x/u Ei(x/u - %)

Rearrangement of (B.9) yilelds the following recursion relation for n>0.

(B.12a) I =E L&) +ul _,(x,0) (n > 0)
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B.2.2 Limit cases

We consider the limit cases of (B.1la) and (B.12a). When x=0 and
u#0, u#l, then for n=0 (B.8) yields

1 - x/v 1,
Io(O’U) = 1im f dv = J av
x>0 Vi
0 0

(B.11b) I,(0,1) = log %ﬁ%

Next, recalling (B.4b), equation (B.12a) becomes
(B.12b) In(O,u) =1/n + uIn_l(O,u) (n>0) .

When u=0, then if n=0 and (B.3) is used in (B.8)

- x/v

v =E @, (x>0

1
(B.11lc) Io(x,O) = J "

0

and using (B.llc) in (B.1l2a) yields

(B.12¢c) In(x,O) = E (x) (n>0) .

n+l

The case when x=0 and p=0 is directly obtained from (B.2b) and
(B.4a) in (B.12c) and yields

(B.12¢) In(0,0) =
1/n n>0

Finally, when p=1, (B.lla) does not exist, i.e.,

(B.12e) I (x,1) > o (n=0,1,2,...)
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B.2.3 The generalized exponential integral Iéa’b)(x,u)

Similar to Eéa’b)(x) Sect. B.1.3, we define the generalized integral

(B.13) Ir(la’b) (x,1)

b VBe” x/v
J % —— dv (x>0, |u|<1l, n>0, 0<a<b<l)

V=it
a

Using (B.13) and (B.5), the recursion formula (B.9) is generalized
to

b
@16 1P e - P e - J e Mgy s 5@ ) n > 0)

T Tnt2
a
Iéa’b)(x,u) is derived as follows:
b -x/v
(a’b) _ e
I0 (x,u) = - dv
a
b a\ -x/v
= J - J dv
V=H
0 0
(.15) 1832 Gen) = G0 - 13w

where from (B.10) with the integration limit 1 replaced by b we find

b b e—x/v —x/u
(B.16) Io(x,u) = J — dv = El(x/b) + e Ei(x/u - x/b)
0
The definition
. (a,b) -
(B.17) Ei (x/y = x) = Ei(x/y - x/b) - Ei(x/y - x/a)

combined with (B.16) in (B.1l5) yields

(B.18a) Iéa’b)(x,u) - E{a’b)(x) + e vgg(asd)
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Rearrangement of (B.1l4) yields the recursion relation

(8.192) 1P e = 23 @+ P w0

B.2.4 Limit cases for the generalized form

We consider the limit cases of (B.18a) and (B.19a). When x=0 and
u#0, p#a, u#b in (B.13), we find

(a b) _ dv
CRAE f v
a
i.e.,
(B.18b) Iéa’b)(o,u) = log lb"“l
and
b

(8.19b) 1@ 0, = BP0 + P 0w @0 .

When u=0#a and x>0, we find from (B.13) and (B.l4) that

(B.18c) I(()a’b) (x,0) = E](_a’b) (x)
and
(B.19¢) Ir(la’b)(x,O) - (a 20 () (n > 0) .

When x=0 and u=0#a, (B.13) yields

I(a’b)(0,0) = log b/a

(B.18d) 0

and
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(B.19d) Iia’b)(o,O) - (a b)(0) (n > 0)
When p=a#0 we find

8.18¢) 127 (x,a) = {E{a’b)(x) + e *3[51(x/a - x/b) - lim Ei(x/u - x/a)]}

0 a
&> =0

since

1lim

v Ei(g) » =
When n>0 we have

{22 (r,2) = B2 () + a1{8:P) (x,2)
(B.19¢) 163D (0 = B (o 4 P10 (x,0) >

Analogous formulas can be developed for the case u=b and a#0 with
precisely the same results for the limits. When y=a=0 we find from (B.6a),
(B.18¢c) and (B.19c) that

(B.19f) Iio’b)(x,O) - n>0.
E +l(X/b) x#0

When u=b and a=0 we find from (B.18e) that

L(0,)

-x/b
0 (

lim Ei(x/u - x/b)) -
u-+b

(B.18g) (x,b) = El(x/b) + e

and

0
(B.19g) %P eoby = B by + b0 by » e
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Symbol

o2

-n

c(x)

D(0,a)

fl(O,u),fz(a,u)

u

v(x,u),9(x)
TSR

EA’

;e

wB(x,u),¢B(X)

Ed
P EF

s

qot(x’U)

q:n(x’“)
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NOMENCLATURE

Description

Width of computational cell.
Combining coefficients for elementary solutions qn(x,u).

Combining coefficients for elementary solutions q_n(x,u)-
After defining a 0’ subsequent references to a_, denote

~

a .
-n
Exponent of Chapeau function 6N_l(v) in qN_l(x,u) mode

for v, - <v<1 (0 <a <1).

N-1
Macroscopic mean number of secondaries per collision.

Denotes the domain 0 < x < a and |u| < 1.

Inhomogeneous boundary term for incident flux boundary

condition.
Angular direction cosine.

Neutron angular (scalar) flux distribution at location

x with direction cosine y.

Even parity neutron angular flux distribution for the

symmetrized transport equation.

Neutron angular (scalar) flux distribution located on

the mesh nodes for the benchmark cell modes analysis.

Neutron angular (scalar) flux distribution for exact

benchmark problem.

Neutron angular (scalar) flux distribution obtained by

approximate numerical methods.
Neutron angular (scalar) flux distribution error.

Neutron angular (scalar) flux distribution for multicell

reference problem,
Elementary asymptotic neutron angular flux solution.

Elementary asymptotic and transient neutron angular

flux solution.
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Symbol Description
S(x,u) Distributed neutron source at location x with direc-

tion cosine yu.

a(x) Macroscopic total cross section.
en(v) Chapeau function base functions for expansion of A(v).
v Transient eigenvalue spectrum of the homogeneous

transport equation.

voi Asymptotic eigenvalues of the homogeneous transport
equation.

X Spatial position coordinate.

Subscripts Description

i Index of spatial variable x, i=1,2,...,I.

m Index of angular direction cosine u, m=1,2,...,M.

n Index of elementary solutions (modes), n=0,1,...,N

and transient eigenvalue spectrum variable v.

+

0~ Index of asymptotic elementary solutions.
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